INVEXITY AND A CLASS OF CONSTRAINED OPTIMIZATION PROBLEMS IN HILBERT SPACES

被引:0
作者
Chatterjee, Sandip [1 ]
Mukherjee, R. N. [2 ]
机构
[1] Heritage Inst Technol, Dept Math, Kolkata 700107, W Bengal, India
[2] Univ Burdwan, Dept Math, Burdwan, W Bengal, India
来源
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS | 2014年 / 29卷 / 04期
关键词
Convexity; Invexity; Frechet Derivative; Archimedean Order; Zorn's Lemma;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper the notion of invexity has been introduced in Hilbert spaces. A class of constrained optimization problems has been proposed under the assumption of invexity. Some of the algebraic properties leading to the optimality criterion of such a class of problems has been studied.
引用
收藏
页码:337 / 342
页数:6
相关论文
共 21 条
[1]  
Anderson E. J., 1987, LINEAR PROGRAMMING I
[2]  
Avriel M., 2003, NONLINEAR PROGRAMMIN
[3]  
Barbu V., 2012, CONVEXITY OPTIMIZATI, DOI 10.1007/978-94-007-2247-7
[4]   GENERALIZED MEANS AND GENERALIZED CONVEX FUNCTIONS [J].
BENTAL, A .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1977, 21 (01) :1-13
[5]  
BENYAMINI Y, 2000, AM MATH SOC C PUBL, V48
[6]  
Bertsekas D., 2009, CONVEX OPTIMIZATION
[7]  
Borwein J. M., 2006, CONVEX ANAL NONLINEA, V2nd
[8]  
Boyd S., 2004, CONVEX OPTIMIZATION
[9]   INVEX FUNCTIONS AND DUALITY [J].
CRAVEN, BD ;
GLOVER, BM .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1985, 39 (AUG) :1-20
[10]  
Craven BD, 1981, B AUSTR MATH SOC, V24, P1