A SIMPLE PROOF OF THE GENERALIZED LIEB-THIRRING INEQUALITIES IN ONE-SPACE DIMENSION

被引:20
作者
EDEN, A [1 ]
FOIAS, C [1 ]
机构
[1] INDIANA UNIV,DEPT MATH,BLOOMINGTON,IN 47405
关键词
D O I
10.1016/0022-247X(91)90191-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lieb-Thirring inequalities give a sharp upper bound for the Lp-norm of a function which is the pointwise sum of the squares of a finite orthonormal sequence of functions that are elements of a suitable Sobolev space [LT]. Originally proven for the functions defined on the whole n-dimensional Euclidean space, they were later extended to bounded domains and to suborthogonal sequences of functions [GMT]. Here, we present a simple proof of these inequalities for bounded intervals in one space dimension utilizing simple Sobolev inequalities and standard results from Hilbert space theory. © 1991.
引用
收藏
页码:250 / 254
页数:5
相关论文
共 4 条
[1]  
EDEN A, IN PRESS NONLINEARIT
[2]  
Ghidaglia J.-M., 1988, DIFFER INTEGRAL EQU, V1, P1
[3]  
LIB E, 1976, STUDIES MATH PHYSICS, P269
[4]  
Temam R., 1988, INFINITE DIMENSIONAL, DOI [10.1007/978-1-4684-0313-8, DOI 10.1007/978-1-4684-0313-8]