THE MAXIMUM NUMBER OF HAMILTONIAN PATHS IN TOURNAMENTS

被引:25
作者
ALON, N [1 ]
机构
[1] TEL AVIV UNIV,SCH MATH SCI,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,IL-69978 TEL AVIV,ISRAEL
关键词
AMS subject classification (1980): 05C20; 05C35; 05C38;
D O I
10.1007/BF02128667
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Solving an old conjecture of Szele we show that the maximum number of directed Hamiltonian paths in a tournament on n vertices is at most c . n3/2 . n!/2n-1, where c is a positive constant independent of n.
引用
收藏
页码:319 / 324
页数:6
相关论文
共 10 条
[1]  
Bregman L. M, 1973, SOV MATH DOKL, V14, P945
[2]  
BREGMAN LM, 1973, DOKL AKAD NAUK SSSR+, V221, P27
[3]  
EGORYCHEV GP, 1981, DOKL AKAD NAUK SSSR+, V258, P1041
[4]  
Erdos P., 1974, PROBABILISTIC METHOD
[5]  
FALIKMAN DI, 1981, MATH ZAMETKI, V19, P931
[6]  
Minc Henryk, 1963, B AM MATH SOC, V69, P789
[7]  
Moon J. W., 1968, TOPICS TOURNAMENTS
[8]   SHORT PROOF OF MINC CONJECTURE [J].
SCHRIJVER, A .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 25 (01) :80-83
[9]  
SPENCER J, 1987, 10 LECTURES PROBABIL
[10]  
Szele T., 1943, KIZEPISKOLAI MATEMAT, V50, P223