A Note on Multiplicative (Generalized)-Derivations as 3-Homomorphisms on Prime Rings 3-Antihomomorphisms

被引:0
|
作者
Ali, Shakir [1 ]
Dar, Nadeem Ahamd [2 ]
Khan, Abdul Nadim [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] IUST, Dept Math, Dept Comp Sci & Engn, Awantipora 192301, Jammu & Kashmir, India
关键词
Prime ring; Multiplicative (generalized)-derivation; 3-Homomorphism; 3-Antihomomorphism;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring. An additive mapping f : R -> R is called 3-homomorphism (resp. 3-antihomomorphsm) on R if f(xyz) = f(x) f(y) f(z) (resp. f(xyz) = f(z) f(y) f(x)) for all x, y, z is an element of R. In the present paper, we characterize multiplicative (generalized)-derivation which acts as a 3-homomorphism or as a 3-antihomorphism on an appropriate subset of a ring R.
引用
收藏
页码:151 / 156
页数:6
相关论文
共 50 条
  • [41] Prime Rings with Generalized Derivations on Right Ideals
    Demir, C.
    Argac, N.
    ALGEBRA COLLOQUIUM, 2011, 18 : 987 - 998
  • [42] On generalized derivations and Jordan ideals of prime rings
    Sandhu, Gurninder S.
    Davvaz, Bijan
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 227 - 233
  • [43] Generalized g-derivations on prime rings
    De Filippis, V.
    Tiwari, S. K.
    Singh, Sanjay Kumar
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (02)
  • [44] Identities involving generalized derivations in prime rings
    Yadav, V. K.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (01) : 259 - 270
  • [45] Product and commuting generalized derivations in prime rings
    Tiwari, S. K.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 1377 - 1397
  • [46] On generalized (α,β)-derivations and Lie ideals of prime rings
    Sandhu, Gurninder S.
    Ali, Shakir
    Boua, Abdelkarim
    Kumar, Deepak
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (01) : 499 - 513
  • [47] Generalized derivations on Lie ideals in prime rings
    Basudeb Dhara
    Sukhendu Kar
    Sachhidananda Mondal
    Czechoslovak Mathematical Journal, 2015, 65 : 179 - 190
  • [48] Generalized derivations with annihilator conditions in prime rings
    Ali, Asma
    Khan, Shahoor
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (02) : 783 - 792
  • [49] A note on generalized derivations of semiprime rings
    Vukman, Joso
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (02): : 367 - 370
  • [50] COMMUTATIVITY OF PRIME RINGS WITH GENERALIZED SKEW DERIVATIONS
    Ashraf, Mohammad
    Parveen, Nazia
    Pary, Sajad Ahmad
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 67 (1-2): : 21 - 30