A Note on Multiplicative (Generalized)-Derivations as 3-Homomorphisms on Prime Rings 3-Antihomomorphisms

被引:0
|
作者
Ali, Shakir [1 ]
Dar, Nadeem Ahamd [2 ]
Khan, Abdul Nadim [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] IUST, Dept Math, Dept Comp Sci & Engn, Awantipora 192301, Jammu & Kashmir, India
关键词
Prime ring; Multiplicative (generalized)-derivation; 3-Homomorphism; 3-Antihomomorphism;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring. An additive mapping f : R -> R is called 3-homomorphism (resp. 3-antihomomorphsm) on R if f(xyz) = f(x) f(y) f(z) (resp. f(xyz) = f(z) f(y) f(x)) for all x, y, z is an element of R. In the present paper, we characterize multiplicative (generalized)-derivation which acts as a 3-homomorphism or as a 3-antihomorphism on an appropriate subset of a ring R.
引用
收藏
页码:151 / 156
页数:6
相关论文
共 50 条
  • [31] GENERALIZED DERIVATIONS ON IDEALS OF PRIME RINGS
    Albas, Emine
    MISKOLC MATHEMATICAL NOTES, 2013, 14 (01) : 3 - 9
  • [32] Generalized derivations and commutativity of prime rings
    Quadri, MA
    Khan, MS
    Rehman, N
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2003, 34 (09) : 1393 - 1396
  • [33] Identities with Generalized Derivations in Prime Rings
    Fosner, Maja
    Vukman, Joso
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2012, 9 (04) : 847 - 863
  • [34] Identities with Generalized Derivations in Prime Rings
    Maja Fošner
    Joso Vukman
    Mediterranean Journal of Mathematics, 2012, 9 : 847 - 863
  • [35] A CHARACTERIZATION OF GENERALIZED DERIVATIONS ON PRIME RINGS
    Alahmadi, Adel
    Ali, Shakir
    Khan, Abdul Nadim
    Khan, Mohammad Salahuddin
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (08) : 3201 - 3210
  • [36] Generalized lie derivations in prime rings
    Hvala, Bojan
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (05): : 1425 - 1430
  • [37] ANNIHILATOR CONDITIONS OF MULTIPLICATIVE REVERSE DERIVATIONS ON PRIME RINGS
    Sandhu, Gurninder S.
    Kumar, Deepak
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2019, 25 : 87 - 103
  • [38] MULTIPLICATIVE GENERALIZED DERIVATIONS ON IDEALS IN SEMIPRIME RINGS
    Golbas, Oznur
    MATHEMATICA SLOVACA, 2016, 66 (06) : 1285 - 1296
  • [39] A Note on Skew Derivations and Antiautomorphisms of Prime Rings
    Alqarni, Faez A.
    Rehman, Nadeem U. R.
    Alnoghashi, Hafedh
    Nisar, Junaid
    Al-Mallah, Omar
    JOURNAL OF MATHEMATICS, 2025, 2025 (01)
  • [40] Some results on generalized (σ, τ)-derivations in prime rings
    Güven E.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2013, 54 (2): : 559 - 566