A Note on Multiplicative (Generalized)-Derivations as 3-Homomorphisms on Prime Rings 3-Antihomomorphisms

被引:0
|
作者
Ali, Shakir [1 ]
Dar, Nadeem Ahamd [2 ]
Khan, Abdul Nadim [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] IUST, Dept Math, Dept Comp Sci & Engn, Awantipora 192301, Jammu & Kashmir, India
关键词
Prime ring; Multiplicative (generalized)-derivation; 3-Homomorphism; 3-Antihomomorphism;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring. An additive mapping f : R -> R is called 3-homomorphism (resp. 3-antihomomorphsm) on R if f(xyz) = f(x) f(y) f(z) (resp. f(xyz) = f(z) f(y) f(x)) for all x, y, z is an element of R. In the present paper, we characterize multiplicative (generalized)-derivation which acts as a 3-homomorphism or as a 3-antihomorphism on an appropriate subset of a ring R.
引用
收藏
页码:151 / 156
页数:6
相关论文
共 50 条
  • [1] A NOTE ON MULTIPLICATIVE (GENERALIZED) (α, β)-DERIVATIONS IN PRIME RINGS
    Rehman, Nadeem Ur
    Al-omary, Radwan M.
    Muthana, Najat Mohammed
    ANNALES MATHEMATICAE SILESIANAE, 2019, 33 (01) : 266 - 275
  • [2] On multiplicative (generalized)-derivations in prime and semiprime rings
    Dhara, Basudeb
    Ali, Shakir
    AEQUATIONES MATHEMATICAE, 2013, 86 (1-2) : 65 - 79
  • [3] On multiplicative (generalized)-derivations in prime and semiprime rings
    Basudeb Dhara
    Shakir Ali
    Aequationes mathematicae, 2013, 86 : 65 - 79
  • [4] On Lie ideals with multiplicative (generalized)-derivations in prime and semiprime rings
    Ali S.
    Dhara B.
    Dar N.A.
    Khan A.N.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2015, 56 (1): : 325 - 337
  • [5] A Note on Generalized Jordan *-Derivations on Prime *-Rings
    Khan, Abdul Nadim
    Dar, Nadeem Ahmad
    Abbasi, Adnan
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (02) : 403 - 414
  • [6] A note on generalized Lie derivations of prime rings
    Nihan Baydar Yarbil
    Nurcan Argaç
    Frontiers of Mathematics in China, 2017, 12 : 247 - 260
  • [7] A note on generalized Lie derivations of prime rings
    Yarbil, Nihan Baydar
    Argac, Nurcan
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (01) : 247 - 260
  • [8] A note on multiplicative (generalized)-derivations and left ideals in semiprime rings
    Dhara, Basudeb
    Kar, Sukhendu
    Kuila, Swarup
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (02) : 631 - 640
  • [9] A note on multiplicative (generalized)-derivations and left ideals in semiprime rings
    Basudeb Dhara
    Sukhendu Kar
    Swarup Kuila
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 631 - 640
  • [10] PRIME AND SEMIPRIME RINGS INVOLVING MULTIPLICATIVE (GENERALIZED)-SKEW DERIVATIONS
    Boua, A.
    Ashraf, M.
    Abdelwanis, A. Y.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (01): : 89 - 104