ASYMPTOTIC-BEHAVIOR OF ORTHOGONAL POLYNOMIALS CORRESPONDING TO MEASURE WITH DISCRETE PART OFF THE UNIT-CIRCLE

被引:5
作者
LI, X [1 ]
PAN, K [1 ]
机构
[1] BARRY UNIV, DEPT MATH, MIAMI SHORES, FL 33161 USA
关键词
D O I
10.1006/jath.1994.1113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a positive measure mu on the unit circle (Gamma) in the complex plane, m points Z(j) off Gamma and m positive numbers A(j), j = 1, 2,..., m, we investigate the asymptotic behavior of orthonormal polynomials Phi(n)(z) corresponding to d mu/2 pi + Sigma(j=1)(m)A(j) delta(zj), where delta(z) denotes the unit measure supported at point z. Our main result is the relative asymptotics of Phi(n)(z) with respect to the orthonormal polynomial corresponding to d mu/(2 pi) off and on Gamma. (C) 1994 Academic Press, Inc.
引用
收藏
页码:54 / 71
页数:18
相关论文
共 17 条
[1]  
CACHAFEIRO A, 1989, LECTURE NOTES PURE A, V117, P123
[2]   PERTURBATIONS IN TOEPLITZ MATRICES .2. ASYMPTOTIC PROPERTIES [J].
CACHAFEIRO, MA ;
MARCELLAN, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 156 (01) :44-51
[3]  
Freud G., 1971, ORTHOGONAL POLYNOMIA
[4]  
GERONIMUS Y, 1954, TRANSL MATH MONOGR, V3, P1
[5]  
Geronimus Y. L., 1961, ORTHOGONAL POLYNOMIA
[6]  
KALIAGUINE VA, 1989, B SOC MATH BELG B, V41, P29
[7]  
KALLIAGUINE VA, IN PRESS J APPROX TH
[8]  
KALYAGIN VA, 1991, IN PRESS MAY P USSR
[9]  
LI X, 1993, INT J MATH MATH SCI, V2, P255
[10]  
MATE A, 1987, CONSTR APPROX, V3, P51, DOI 10.1007/BF01890553