EXPONENTIAL DECAY AND NUMERICAL SOLUTION FOR A TIMOSHENKO SYSTEM WITH DELAY TERM IN THE INTERNAL FEEDBACK

被引:0
作者
Rapos, C. A. [1 ]
Chuquipoma, J. A. D. [1 ]
Avila, J. A. J. [1 ]
Santos, M. L. [2 ]
机构
[1] Univ Fed Sao Joao del Rei, BR-36307352 Sao Joao Del Rei, MG, Brazil
[2] Fed Univ Parr, BR-36307352 Belem, Para, Brazil
来源
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS | 2013年 / 3卷 / 01期
关键词
Timoshenko system; weak damping; exponential decay; delay;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we study the asymptotic behavior as t > Do of the solution for the Timoshenko system with delay term in the feedback. We use the semigroup theory for to prove the well-posedness of the system and for to establish the exponential stability. As far we know, there exist few results for problems with delay, where the asymptotic behavior is based on the GearhartHerbst-Pruss-Huang theorem to dissipative system. See [4],[5],[6]. Finally, we present numerical results of the solution of the system.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 14 条
  • [1] Abdallah C., 1993, DELAYED POSITIVE FEE, P3016
  • [2] Adams RA., 1975, SOBOLEV SPACES
  • [3] Energy decay for Timoshenko systems of memory type
    Ammar-Khodja, F
    Benabdallah, A
    Rivera, JEM
    Racke, R
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (01) : 82 - 115
  • [4] Gearhart L., 1978, AM MATH SOC, V236, P385
  • [5] Huang F. L., 1985, ANN DIFFERENTIAL EQU, V1, P43
  • [6] Liu Z., 1999, CHAPMAN HALLCRC RES
  • [7] Timoshenko systems with indefinite damping
    Munoz Rivera, Jaime E.
    Racke, Reinhard
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (02) : 1068 - 1083
  • [8] Nicaise S., 2010, ESAIM CONTROL OPTIM, V16
  • [9] Pazy A., 1993, SEMIGROUPS LINEAR OP
  • [10] ON THE SPECTRUM OF CO-SEMIGROUPS
    PRUSS, J
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (02) : 847 - 857