An Extension of Wright Function and Its Properties

被引:23
作者
El-Shahed, Moustafa [1 ]
Salem, Ahmed [2 ]
机构
[1] Qassim Univ, Unaizah Fac Arts & Sci, Unaizah 51431, Qassim, Saudi Arabia
[2] October 6 Univ, Fac Informat Syst & Comp Sci, Giza 12585, Egypt
关键词
D O I
10.1155/2015/950728
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is devoted to the study of the function W-alpha,beta(gamma,delta) (z) which is an extension of the classical Wright function and Kummer confluent hypergeometric function. The properties of W-alpha,beta(gamma,delta) (z) including its auxiliary functions and the integral representations are proven.
引用
收藏
页数:11
相关论文
共 22 条
[1]  
Andrews L.C., 1985, SPECIAL FUNCTIONS EN
[2]  
Arfken G., 2000, MATH METHODS PHYS
[3]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA
[4]  
Gorenflo R., 1999, FRACT CALC APPL ANAL, V2, P383
[5]  
Goreno R., 2014, MITTAG LEFFLER FUNCT
[6]  
Kilbas A., 2004, SER ANALYTIC METHODS
[7]  
KILBAS A. A., 2005, FRACT CALC APPL ANAL, V8, P113
[8]  
Kilbas AA., 2002, FRAC CALC APPL ANAL, V5, P437
[9]  
Kiryakova V, 2008, AUTOMATIC CONTROL RO, V7, P79
[10]   Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus [J].
Kiryakova, VS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :241-259