NUMERICAL STUDY OF DISCRETE-VELOCITY GASES

被引:56
作者
INAMURO, T [1 ]
STURTEVANT, B [1 ]
机构
[1] MITSUBISHI HEAVY IND CO LTD,ADV TECHNOL RES CTR,YOKOHAMA 236,JAPAN
来源
PHYSICS OF FLUIDS A-FLUID DYNAMICS | 1990年 / 2卷 / 12期
关键词
D O I
10.1063/1.857825
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A finite-difference method for solving the discrete Boltzmann equations, which are the governing equations for a model gas in which molecules have many discrete velocities, is developed. The method is applied to three fundamental problems in rarefied gas flow to study the features of discrete-velocity gases: normal shock wave structure, heat transfer between two parallel plates, and two-dimensional vapor deposition. Two different discrete-velocity gas models are used. © 1990 American Institute of Physics.
引用
收藏
页码:2196 / 2203
页数:8
相关论文
共 12 条
[1]  
Broadwell J.E., 1964, J FLUID MECH, V19, P401, DOI [10.1017/S0022112064000817, DOI 10.1017/S0022112064000817]
[2]   SHOCK STRUCTURE IN A SIMPLE DISCRETE VELOCITY GAS [J].
BROADWELL, JE .
PHYSICS OF FLUIDS, 1964, 7 (08) :1243-1247
[3]   COUETTE-FLOW FOR A GAS WITH A DISCRETE VELOCITY DISTRIBUTION [J].
CABANNES, H .
JOURNAL OF FLUID MECHANICS, 1976, 76 (JUL28) :273-287
[4]  
Cabannes H., 1980, DISCRETE BOLTZMANN E
[5]   KINETIC-THEORY FOR A DISCRETE VELOCITY GAS AND APPLICATION TO SHOCK STRUCTURE [J].
GATIGNOL, R .
PHYSICS OF FLUIDS, 1975, 18 (02) :153-161
[6]   KINETIC-THEORY BOUNDARY-CONDITIONS FOR DISCRETE VELOCITY GASES [J].
GATIGNOL, R .
PHYSICS OF FLUIDS, 1977, 20 (12) :2022-2030
[7]  
GATIGNOL R, 1977, RAREFIED GAS DYN, V1, P195
[8]  
Goldstein D., 1989, PROG ASTRONAUT AERON, V117, P100
[9]  
GOLDSTEIN D, 1989, AIAA891668 PAP
[10]  
GOLDSTEIN DP, COMMUNICATION