EFFECTIVE ACTIONS OF (2+1)-DIMENSIONAL GRAVITY AND BF THEORY

被引:13
|
作者
ODA, I [1 ]
YAHIKOZAWA, S [1 ]
机构
[1] INT CTR THEORET PHYS,TRIESTE,ITALY
关键词
D O I
10.1088/0264-9381/11/11/008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We develop the perturbation theory of the BF theory, which is equivalent to (2+1)-dimensional gravity without a cosmological constant if we take SO(1, 2) as the gauge group. We show that the BF theory, which may have a Chern-Simons term, has only tree- or one-loop connected Feynman diagrams and that the theory is completely finite (at all orders). We evaluate the effective actions of the BF theory and the generalized BF theory which has a 'cosmological constant' and show that quantum corrections lead to 'Chern-Simons terms', using a BRST invariant regularization based on Pauli-Villars.
引用
收藏
页码:2653 / 2666
页数:14
相关论文
共 50 条
  • [31] Classical Teichmuller theory and (2+1) gravity
    Benedetti, R
    Guadagnini, E
    PHYSICS LETTERS B, 1998, 441 (1-4) : 60 - 68
  • [32] Study of Effective 2+1 Dimensional Gravity in Ferrofluid-Based Hyperbolic Metamaterials
    Smolyaninova, Vera N.
    Cartelli, Jonathon
    Christopher, Nathaniel
    Kist, Benjamin
    Perry, Jonathan
    Spickard, Stephanie
    Devadas, Mary Sajini
    Smolyaninov, Igor I.
    ANNALEN DER PHYSIK, 2023, 536 (03)
  • [33] CHERN-SIMONS AND PALATINI ACTIONS AND (2+1)-GRAVITY
    ASHTEKAR, A
    ROMANO, JD
    PHYSICS LETTERS B, 1989, 229 (1-2) : 56 - 60
  • [34] Black-hole-type solution in teleparallel theory of (2+1)-dimensional gravity
    Kawai, T
    PROGRESS OF THEORETICAL PHYSICS, 1995, 94 (06): : 1169 - 1174
  • [35] Virial coefficients from (2+1)-dimensional QED effective actions at finite temperature and density
    Borges, PF
    Boschi, H
    Hott, M
    MODERN PHYSICS LETTERS A, 2002, 17 (31) : 2079 - 2087
  • [36] HOW SOLVABLE IS (2+1)-DIMENSIONAL EINSTEIN GRAVITY
    MONCRIEF, V
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (12) : 2978 - 2982
  • [37] Classical and quantum solutions of 2+1 dimensional gravity
    Kenmoku, M
    Matsuyama, T
    Sato, R
    Uchida, S
    FRONTIERS OF FUNDAMENTAL PHYSICS 4, 2001, : 161 - 167
  • [38] HOMOGENEOUS (2+1)-DIMENSIONAL GRAVITY IN THE ASHTEKAR FORMULATION
    BARBERO, GJF
    VARADARAJAN, M
    NUCLEAR PHYSICS B, 1995, 456 (1-2) : 355 - 376
  • [39] Quantum modular group in (2+1)-dimensional gravity
    Acta Phys Hung New Ser Heavy Ion Phys, 4 (361-367):
  • [40] Quantum modular group in (2+1)-dimensional gravity
    Carlip, S
    Nelson, JE
    ACTA PHYSICA HUNGARICA NEW SERIES-HEAVY ION PHYSICS, 1999, 10 (04): : 361 - 367