THE SOLITON PERTURBATION-THEORY BASED ON THE RIEMANN-HILBERT SPECTRAL PROBLEM

被引:13
作者
SHCHESNOVICH, VS
机构
[1] Division for Optical Problems in Information Technologies, Academy of Sciences, 220072 Minsk
关键词
D O I
10.1016/0960-0779(95)00004-N
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The nonlinear evolution equations associated with the general N x N Zakharov-Shabat spectral problem are considered in the Riemann-Hilbert problem framework. Equations describing the time-dependence of the Riemann-Hilbert spectral data in the presence of perturbation are derived. A scheme for calculating corrections to soliton solutions is described. A generalization of the theory is considered.
引用
收藏
页码:2121 / 2133
页数:13
相关论文
共 13 条
[1]   DYNAMICS OF SOLITONS UNDER RANDOM PERTURBATIONS [J].
BASS, FG ;
KIVSHAR, YS ;
KONOTOP, VV ;
SINITSYN, YA .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1988, 157 (02) :63-181
[2]   ON HIGHER-ORDER CORRECTIONS IN SOLITON PERTURBATION-THEORY [J].
DOKTOROV, EV ;
PROKOPENYA, IN .
INVERSE PROBLEMS, 1991, 7 (02) :221-230
[3]   SOLITON EVOLUTION IN THE PRESENCE OF PERTURBATION [J].
KARPMAN, VI .
PHYSICA SCRIPTA, 1979, 20 (3-4) :462-478
[4]  
KAUP DJ, 1984, RES NOTES MATH, V95, P197
[5]  
Kawata T., 1984, ADV NONLINEAR WAVES, VI, P210
[6]   DYNAMICS OF SOLITONS IN NEARLY INTEGRABLE SYSTEMS [J].
KIVSHAR, YS ;
MALOMED, BA .
REVIEWS OF MODERN PHYSICS, 1989, 61 (04) :763-915
[7]   PERTURBATION-THEORY BASED ON THE RIEMANN PROBLEM FOR THE LANDAU-LIFSHITZ EQUATION [J].
KIVSHAR, YS .
PHYSICA D, 1989, 40 (01) :11-32
[8]   ON THE STRUCTURE OF EQUATIONS INTEGRABLE BY THE ARBITRARY-ORDER LINEAR SPECTRAL PROBLEM [J].
KONOPELCHENKO, BG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (06) :1237-1259
[9]   THE POLYNOMIAL SPECTRAL PROBLEM OF ARBITRARY ORDER - A GENERAL-FORM OF THE INTEGRABLE EQUATIONS AND BACKLUND-TRANSFORMATIONS [J].
KONOPELCHENKO, BG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (12) :3125-3141
[10]  
KONOPELCHENKO BG, 1981, J PHYS A, V15, P2017