ASPECTS IN COMMON OF HIGH-LATITUDE IONOSPHERIC VORTEX MOTIONS

被引:0
|
作者
SOUTHWOOD, DJ [1 ]
KIVELSON, MG [1 ]
机构
[1] UNIV CALIF LOS ANGELES, DEPT EARTH & SPACE SCI, LOS ANGELES, CA 90024 USA
来源
ADVANCES IN SPACE RESEARCH-SERIES | 1993年 / 13卷 / 04期
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
It is shown that travelling vortices in the ionospheric flow convey momentum in the direction of the phase motion. We use a simple approximate description of flow in the ionosphere based on an analogy with two dimensional incompressible flow. A non-linear calculation is given which shows that although to first order a travelling vortex may carry no net momentum, the net momentum in the direction of travel is proportional to the square of the flow amplitude. The result shows that transport in the ionosphere of both momentum and magnetic flux is independent of the mechanism by which the vortex pattern is generated at high altitude.
引用
收藏
页码:149 / 157
页数:9
相关论文
共 50 条
  • [21] Mapping high-latitude ionospheric electrodynamics with SuperDARN and AMPERE
    Cousins, E. D. P.
    Matsuo, Tomoko
    Richmond, A. D.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2015, 120 (07) : 5854 - 5870
  • [22] Heating of the high-latitude ionospheric plasma by electric fields
    Davies, JA
    Robinson, TR
    COUPLING AND ENERGETICS IN THE STRATOSPHERE-MESOSPHERE-THERMOSPHERE-IONOSPHERE SYSTEM, 1997, 20 (06): : 1125 - 1128
  • [23] High-latitude ionospheric scintillations during geomagnetic disturbances
    Zou, Shasha
    Ozturk, Doga
    Morton, Jade
    2018 2ND URSI ATLANTIC RADIO SCIENCE MEETING (AT-RASC), 2018,
  • [24] Russian High-latitude Network of Oblique Ionospheric Sounding
    Rogov, D. D.
    Vystavnoi, V. M.
    Blagoveshchenskaya, N. F.
    Baryshev, P. E.
    Kalishin, A. S.
    RUSSIAN METEOROLOGY AND HYDROLOGY, 2021, 46 (04) : 217 - 224
  • [25] Russian High-latitude Network of Oblique Ionospheric Sounding
    D. D. Rogov
    V. M. Vystavnoi
    N. F. Blagoveshchenskaya
    P. E. Baryshev
    A. S. Kalishin
    Russian Meteorology and Hydrology, 2021, 46 : 217 - 224
  • [26] High-latitude ionospheric conductivity variability in three dimensions
    McGranaghan, Ryan
    Knipp, Delores J.
    Matsuo, Tomoko
    GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (15) : 7867 - 7877
  • [27] Detection of high-latitude ionospheric structures using GNSS
    Perevalova, N. P.
    Romanova, E. B.
    Tashchilin, A., V
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2020, 207
  • [28] INTERHEMISPHERIC ASYMMETRY OF THE HIGH-LATITUDE IONOSPHERIC CONVECTION PATTERN
    LU, G
    RICHMOND, AD
    EMERY, BA
    REIFF, PH
    DELABEAUJARDIERE, O
    RICH, FJ
    DENIG, WF
    KROEHL, HW
    LYONS, LR
    RUOHONIEMI, JM
    FRIISCHRISTENSEN, E
    OPGENOORTH, H
    PERSSON, MAL
    LEPPING, RP
    RODGER, AS
    HUGHES, T
    MCEWIN, A
    DENNIS, S
    MORRIS, R
    BURNS, G
    TOMLINSON, L
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1994, 99 (A4) : 6491 - 6510
  • [29] Substorm associated changes in the high-latitude ionospheric convection
    Jayachandran, PT
    MacDougall, JW
    Donovan, EF
    Ruohoniemi, JM
    Liou, K
    Moorcroft, DR
    St-Maurice, JP
    GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (20)
  • [30] THE EFFECT OF MAGNETOSPHERIC EROSION ON MID-LATITUDE AND HIGH-LATITUDE IONOSPHERIC FLOWS
    FREEMAN, MP
    SOUTHWOOD, DJ
    PLANETARY AND SPACE SCIENCE, 1988, 36 (05) : 509 - 522