DECOMPOSITION OF PARTIAL ORDERS

被引:0
作者
WAGNER, D [1 ]
机构
[1] TECH UNIV BERLIN,FACHBEREICH MATH,W-1000 BERLIN 12,GERMANY
来源
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS | 1990年 / 6卷 / 04期
关键词
AMS subject classification (1980): 06A10; Boolean lattices; partial orders; split decomposition; submodular functions;
D O I
10.1007/BF00346130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A decomposition theory for partial orders which arises from the split decomposition of submodular functions is introduced. As a consequence of this theory, any partial order has a unique decomposition consisting of indecomposable partial orders and certain highly decomposable partial orders. The highly decomposable partial orders are completely characterized. As a special case of partial orders, we consider lattices and distributive lattices. It occurs, that the highly decomposable distributive lattices are precisely the Boolean lattices. © 1990 Kluwer Academic Publishers.
引用
收藏
页码:335 / 350
页数:16
相关论文
共 9 条
  • [1] DECOMPOSITION OF SUBMODULAR FUNCTIONS
    CUNNINGHAM, WH
    [J]. COMBINATORICA, 1983, 3 (01) : 53 - 68
  • [2] A COMBINATORIAL DECOMPOSITION-THEORY
    CUNNINGHAM, WH
    EDMONDS, J
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (03): : 734 - 765
  • [3] DECOMPOSITION OF DIRECTED-GRAPHS
    CUNNINGHAM, WH
    [J]. SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1982, 3 (02): : 214 - 228
  • [4] A DECOMPOSITION OF DISTRIBUTIVE LATTICES
    FUJISHIGE, S
    [J]. DISCRETE MATHEMATICS, 1985, 55 (01) : 35 - 55
  • [5] Gratzer G., 1979, LATTICE THEORY
  • [6] Mohring R.H., 1984, ANN DISCRETE MATH, V19, P257
  • [7] MOHRING RH, 1987, ALGORITHMS ORDRE, V255, P105
  • [8] WAGNER D, IN PRESS DISCRETE MA
  • [9] Welsh D.J.A., 1976, MATROID THEORY