CONTINUOUS HAHN POLYNOMIALS

被引:1
作者
MICU, M
机构
[1] Department of Theoretical Physics, Institute of Atomic Physics, Bucharest-Magurele
关键词
D O I
10.1063/1.530194
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Continuous Hahn polynomials S(n)(x) appear in a formulation of quantum mechanics on a discrete time lattice, where they form a natural basis for the state vectors. In this paper we derive some of their generating functions, the expression of the raising and lowering operators and give a lower bound for the largest root of the equation S(n)(x) = 0.
引用
收藏
页码:1197 / 1205
页数:9
相关论文
共 50 条
[31]   Hahn polynomials and the Burnside process [J].
Persi Diaconis ;
Chenyang Zhong .
The Ramanujan Journal, 2023, 61 :567-595
[32]   GLOBAL ASYMPTOTICS OF THE HAHN POLYNOMIALS [J].
Lin, Y. ;
Wong, R. .
ANALYSIS AND APPLICATIONS, 2013, 11 (03)
[33]   ASSOCIATED DUAL HAHN POLYNOMIALS [J].
ISMAIL, MEH ;
LETESSIER, J ;
VALENT, G .
LECTURE NOTES IN MATHEMATICS, 1988, 1329 :251-254
[34]   Hahn polynomials and the Burnside process [J].
Diaconis, Persi ;
Zhong, Chenyang .
RAMANUJAN JOURNAL, 2023, 61 (02) :567-595
[35]   MULTIVARIABLE BIORTHOGONAL HAHN POLYNOMIALS [J].
TRATNIK, MV .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (03) :627-634
[36]   Hahn polynomials on polyhedra and quantum integrability [J].
Iliev, Plamen ;
Xu, Yuan .
ADVANCES IN MATHEMATICS, 2020, 364
[37]   Exceptional Hahn and Jacobi orthogonal polynomials [J].
Duran, Antonio J. .
JOURNAL OF APPROXIMATION THEORY, 2017, 214 :9-48
[38]   SOME SUMMATION THEOREMS ON HAHN POLYNOMIALS [J].
BARTKO, JJ .
AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (09) :978-+
[39]   RI biorthogonal polynomials of Hahn type [J].
Vinet, Luc ;
Zaimi, Meri ;
Zhedanov, Alexei .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2024, 30 (11) :1765-1781
[40]   Lengths of Roots of Polynomials in a Hahn Field [J].
J. F. Knight ;
K. Lange .
Algebra and Logic, 2021, 60 :95-107