STABLE QUASIMAPS

被引:4
作者
Kim, Bumsig [1 ]
机构
[1] Korea Inst Adv Study, Sch Math, Seoul 130722, South Korea
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2012年 / 27卷 / 03期
关键词
Gromov-Witten Theory; GIT quotients; Curves; Twisted quiver bundles; Symmetric obstruction theory;
D O I
10.4134/CKMS.2012.27.3.571
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The moduli spaces of stable quasimaps unify various moduli appearing in the study of Gromov-Witten Theory. This note is a survey article on the moduli of stable quasimaps, based on papers [9, 11, 18] as well as author's talk at Kinosaki Algebraic Geometry Symposium 2010.
引用
收藏
页码:571 / 581
页数:11
相关论文
共 33 条
[1]  
Audin M., 1991, PROGR MATH, V93
[2]   Donaldson-Thomas type invariants via microlocal geometry [J].
Behrend, Kai .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1307-1338
[3]   Quantum Schubert calculus [J].
Bertram, A .
ADVANCES IN MATHEMATICS, 1997, 128 (02) :289-305
[4]   Gromov-witten invariants for abelian and nonabelian quotients [J].
Bertram, Aaron ;
Ciocan-Fontanine, Ionut ;
Kim, Bumsig .
JOURNAL OF ALGEBRAIC GEOMETRY, 2008, 17 (02) :275-294
[5]  
Cheong D., UNPUB
[6]  
Chuang W.-y., ARXIV10020579
[7]  
Chuang W.-Y., ARXIV09081119
[8]  
Ciocan-Fontanine I., STABLE QUASIMAPS GIT
[9]   Moduli stacks of stable toric quasimaps [J].
Ciocan-Fontanine, Ionut ;
Kim, Bumsig .
ADVANCES IN MATHEMATICS, 2010, 225 (06) :3022-3051
[10]  
Cox D.A., 1995, J ALGEBRAIC GEOM, V4, P17