ASSESSING TIME-BY-COVARIATE INTERACTIONS IN PROPORTIONAL HAZARDS REGRESSION-MODELS USING CUBIC SPLINE FUNCTIONS

被引:178
作者
HESS, KR
机构
[1] Department of Patient Studies, University of Texas, M.D. Anderson Cancer Center, Houston, Texas, 77030-4095, Box 214
关键词
D O I
10.1002/sim.4780131007
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Proportional hazards (or Cox) regression is a popular method for modelling the effects of prognostic factors on survival. Use of cubic spline functions to model time-by-covariate interactions in Cox regression allows investigation of the shape of a possible covariate-time dependence without having to specify a specific functional form. Cubic spline functions allow one to graph such time-by-covariate interactions, to test formally for the proportional hazards assumption, and also to test for non-linearity of the time-by-covariate interaction. The functions can be fitted with existing software using relatively few parameters; the regression coefficients are estimated using standard maximum likelihood methods.
引用
收藏
页码:1045 / 1062
页数:18
相关论文
共 44 条
[1]   TESTING GOODNESS OF FIT OF COX REGRESSION AND LIFE MODEL [J].
ANDERSEN, PK .
BIOMETRICS, 1982, 38 (01) :67-77
[2]  
ANDERSON JA, 1982, J R STAT SOC C-APPL, V31, P44
[3]  
BARLOW WE, 1988, BIOMETRIKA, V75, P65
[4]  
BRESLOW N, 1984, METHODOLOGIES COLLEC, P367
[5]   A 2-SAMPLE CENSORED-DATA RANK TEST FOR ACCELERATION [J].
BRESLOW, NE ;
EDLER, L ;
BERGER, J .
BIOMETRICS, 1984, 40 (04) :1049-1062
[6]  
COX DR, 1972, J R STAT SOC B, V34, P187
[7]   COVARIANCE ANALYSIS OF HEART-TRANSPLANT SURVIVAL DATA [J].
CROWLEY, J ;
HU, M .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1977, 72 (357) :27-36
[8]   FLEXIBLE REGRESSION-MODELS WITH CUBIC-SPLINES [J].
DURRLEMAN, S ;
SIMON, R .
STATISTICS IN MEDICINE, 1989, 8 (05) :551-561
[9]  
FLEMING TR, 1991, COUNTING PROCESSES S, P163
[10]  
GEHAN EA, 1965, BIOMETRIKA, V52, P203, DOI 10.1093/biomet/52.1-2.203