Analysis of a Vector Space Model, Latent Semantic Indexing and Formal Concept Analysis for Information Retrieval

被引:0
|
作者
Kumar, Ch Aswani [1 ]
Radvansky, M. [2 ]
Annapurna, J. [3 ]
机构
[1] VIT Univ, Sch Informat Technol & Engn, Vellore, Tamil Nadu, India
[2] VSB Tech Univ Ostrava, Ostrava, Czech Republic
[3] VIT Univ, Sch Comp Sci & Engn, Vellore, Tamil Nadu, India
关键词
Formal concept analysis; Information Retrieval; latent semantic indexing; vector space model;
D O I
10.2478/cait-2012-0003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Latent Semantic Indexing (LSI), a variant of classical Vector Space Model (VSM), is an Information Retrieval (IR) model that attempts to capture the latent semantic relationship between the data items. Mathematical lattices, under the framework of Formal Concept Analysis (FCA), represent conceptual hierarchies in data and retrieve the information. However, both LSI and FCA use the data represented in the form of matrices. The objective of this paper is to systematically analyze VSM, LSI and FCA for the task of IR using standard and real life datasets.
引用
收藏
页码:34 / 48
页数:15
相关论文
共 50 条
  • [31] Information Retrieval Using A Novel Concept Similarity in Formal Concept Analysis
    Muangprathub, Jirapond
    Boonjing, Veera
    Pattaraintakorn, Puntip
    2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, ELECTRONICS AND ELECTRICAL ENGINEERING (ISEEE), VOLS 1-3, 2014, : 1248 - +
  • [32] Text-based Image Indexing and Retrieval using Formal Concept Analysis
    Ahmad, Imran Shafiq
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2008, 2 (03): : 150 - 170
  • [33] A CRITICAL ANALYSIS OF VECTOR-SPACE MODEL FOR INFORMATION-RETRIEVAL
    RAGHAVAN, VV
    WONG, SKM
    JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE, 1986, 37 (05): : 279 - 287
  • [34] A New Methodology for Computing Semantic Relatedness: Modified Latent Semantic Analysis by Fuzzy Formal Concept Analysis
    Jain, Shivani
    Seeja, K. R.
    Jindal, Rajni
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 1102 - 1109
  • [35] Semantic indexing and fuzzy relevance model in information retrieval
    Kang, BY
    Kim, DW
    Lee, SJ
    Computational Intelligence for Modelling and Prediction, 2005, 2 : 49 - 60
  • [36] Improving information retrieval through correspondence analysis instead of latent semantic analysis
    Qianqian Qi
    David J. Hessen
    Peter G. M. van der Heijden
    Journal of Intelligent Information Systems, 2024, 62 : 209 - 230
  • [37] Recommending library methods: An evaluation of the vector space model (VSM) and latent semantic indexing (LSI)
    McCarey, Frank
    O Cinneide, Mel
    Kushmerick, Nicholas
    REUSE OF OFF-THE-SHELF COMPONENTS, PROCEEDINGS, 2006, 4039 : 217 - 230
  • [38] Improving information retrieval through correspondence analysis instead of latent semantic analysis
    Qi, Qianqian
    Hessen, David J.
    van der Heijden, Peter G. M.
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024, 62 (01) : 209 - 230
  • [39] Evaluating the Effectiveness of the Vector Space Retrieval Model Indexing
    Shin, Jung-Hoon
    Abebe, Mesfin
    Yoo, Cheol Jung
    Kim, Suntae
    Lee, Jeong Hyu
    Yoo, Hee-Kyung
    ADVANCES IN COMPUTER SCIENCE AND UBIQUITOUS COMPUTING, 2017, 421 : 680 - 685
  • [40] Latent semantic indexing for web service retrieval
    Czyszczoń, Adam (adam.czyszczon@pwr.edu.pl), 1600, Springer Verlag (8733):