ON THE HYERS-ULAM STABILITY OF PSI-ADDITIVE MAPPINGS

被引:143
作者
ISAC, G [1 ]
RASSIAS, TM [1 ]
机构
[1] UNIV LA VERNE,DEPT MATH,GR-14510 ATHENS,GREECE
关键词
D O I
10.1006/jath.1993.1010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E1 be a real normed vector space and E2 a real Banach space. S. M. Ulam posed the problem: When does a linear mapping near an approximately additive mapping ƒ: E1 → E2 exist? We give a new generalized solution to Ulam’s problem for Ψ-additive mappings. Some relations with the asymptotic differentiability are also indicated. © 1993 Academic Press, Inc.
引用
收藏
页码:131 / 137
页数:7
相关论文
共 13 条
[1]  
Amann H., 1973, Journal of Functional Analysis, V14, P162, DOI 10.1016/0022-1236(73)90048-7
[2]  
AMANN H, 1974, LECTURES SOME FIXED
[3]  
GAJDA Z, 1991, J MATH MATH SCI, V14, P431
[4]  
GER R, 1972, GENERAL INEQUALITIES, V6, P227
[5]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[6]  
ISAC G, 1982, C MATH, V46, P67
[7]  
Krasnoselskii M. A., 1964, POSITIVE SOLUTIONS O
[8]  
Rassias M.Th., 1990, AEQUATIONES MATH, V39, P309
[9]   STABILITY OF LINEAR MAPPING IN BANACH-SPACES [J].
RASSIAS, TM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 72 (02) :297-280
[10]  
Rudin W., 2017, FOURIER ANAL GROUPS