REGULARITY FOR QUASI-LINEAR 2ND-ORDER SUBELLIPTIC EQUATIONS

被引:75
作者
XU, CJ [1 ]
机构
[1] WUHAN UNIV,WUHAN,PEOPLES R CHINA
关键词
D O I
10.1002/cpa.3160450104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the regularity of solutions of the quasilinear equation [GRAPHICS] where X = (X1, ..., X(m)) is a system of real smooth vector fields, A(ij), B is-an-element-of C infinity (OMEGA x R(m) + 1). Assume that X satisfies the Hormander condition and (A(ij)(x,z,xi)) is positive definite. We prove that if u is-an-element-of S2,alpha (OMEGA) (see Section 2) is a solution of the above equation, then u is-an-element-of C infinity (OMEGA).
引用
收藏
页码:77 / 96
页数:20
相关论文
共 12 条
[1]  
Gilbarg David, 1983, GRUNDLEHREN MATH WIS, V224, DOI [10.1007/978-3-642-61798-0, DOI 10.1007/978-3-642-61798-0]
[2]  
Ladyzhenskaya O. A., 1968, LINEAR QUASILINEAR E
[3]  
OLEINIK OA, 1973, 2ND ORDER EQUATIONS
[4]   HYPOELLIPTIC DIFFERENTIAL OPERATORS AND NILPOTENT GROUPS [J].
ROTHSCHILD, LP ;
STEIN, EM .
ACTA MATHEMATICA, 1976, 137 (3-4) :247-320
[5]   FUNDAMENTAL-SOLUTIONS AND GEOMETRY OF THE SUM OF SQUARES OF VECTOR-FIELDS [J].
SANCHEZCALLE, A .
INVENTIONES MATHEMATICAE, 1984, 78 (01) :143-160
[6]   REGULARITY OF SOLUTIONS OF NONLINEAR PARTIAL-DIFFERENTIAL EQUATIONS ASSOCIATED WITH A SYSTEM OF VECTOR-FIELDS [J].
XU, CJ .
ANNALES DE L INSTITUT FOURIER, 1987, 37 (02) :105-113
[7]  
XU CJ, 1986, COMMUN PART DIFF EQ, V11, P1575
[8]   SUBELLIPTIC VARIATIONAL-PROBLEMS [J].
XU, CJ .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1990, 118 (02) :147-169
[9]  
[No title captured]
[10]  
[No title captured]