NONINVERTIBLE TRANSFORMATIONS ADMITTING NO ABSOLUTELY CONTINUOUS SIGMA-FINITE INVARIANT MEASURE

被引:7
作者
HAWKINS, JM [1 ]
SILVA, CE [1 ]
机构
[1] WILLIAMS COLL,DEPT MATH,WILLIAMSTOWN,MA 01267
关键词
D O I
10.2307/2048336
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a family of n-to-1 conservative ergodic endomorphisms which we will show to admit no sigma-finite absolutely continuous invariant measure. We exhibit recurrent measures for these transformations and study their ratio sets; the examples can be realized as C-parts per thousand endomorphisms of the 2-torus.
引用
收藏
页码:455 / 463
页数:9
相关论文
共 15 条
[1]   MIXING PROPERTIES OF MARKOV OPERATORS AND ERGODIC TRANSFORMATIONS, AND ERGODICITY OF CARTESIAN PRODUCTS [J].
AARONSON, J ;
LIN, M ;
WEISS, B .
ISRAEL JOURNAL OF MATHEMATICS, 1979, 33 (3-4) :198-224
[2]   ABELIAN COCYCLES FOR NONSINGULAR ERGODIC TRANSFORMATIONS AND THE GENERICITY OF TYPE-III1 TRANSFORMATIONS [J].
CHOKSI, JR ;
HAWKINS, JM ;
PRASAD, VS .
MONATSHEFTE FUR MATHEMATIK, 1987, 103 (03) :187-205
[3]  
Connes A., 1981, ERGOD THEOR DYN SYST, V1, P431, DOI DOI 10.1017/S014338570000136X
[4]  
EIGEN SJ, 1989, J LOND MATH SOC, V40, P441
[5]   AN EXAMPLE OF TRANSFORMATION ON THE INTERVAL PIECEWISE C1 AND EXPANSIVE WITHOUT ANY ABSOLUTELY CONTINUOUS INVARIANT PROBABILITY [J].
GORA, P ;
SCHMITT, B .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :101-113
[6]  
HAWKINS JM, 1988, LECT NOTES MATH, V1342, P281
[7]  
HAWKINS JM, 1989, CONT MATH, V94, P159
[8]   PROPER THEORY OF NAMES [J].
KATZ, JJ .
PHILOSOPHICAL STUDIES, 1977, 31 (01) :1-80
[9]  
Krengel U., 1985, ERGODIC THEOREMS
[10]  
Krieger W., 1970, LECT NOTES MATH, V160, P158