Self-adaptive support vector machines: modelling and experiments

被引:0
作者
Du, Peng [1 ]
Peng, Jiming [2 ]
Terlaky, Tamas [3 ]
机构
[1] Lake Simcoe Reg Conservat Author, Corp Serv, Newmarket, ON L3Y 4X1, Canada
[2] Univ Illinois, Dept Ind & Enterprise Syst Engn, Urbana, IL 61801 USA
[3] Sch Computat Engn & Sci, Dept Comp & Software, Hamilton, ON L8S 4K1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Support vector machines (SVMs); Machine learning; Model selection; Feature selection; Bi-level programming;
D O I
10.1007/s110287-008-0071-6
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Method In this paper, we introduce a bi-level optimization formulation for the model and feature selection problems of support vector machines (SVMs). A bi-level optimization model is proposed to select the best model, where the standard convex quadratic optimization problem of the SVM training is cast as a subproblem. Feasibility The optimal objective value of the quadratic problem of SVMs is minimized over a feasible range of the kernel parameters at the master level of the bi-level model. Since the optimal objective value of the subproblem is a continuous function of the kernel parameters, through implicity defined over a certain region, the solution of this bi-level problem always exists. The problem of feature selection can be handled in a similar manner. Experiments and results Two approaches for solving the bi-level problem of model and feature selection are considered as well. Iixperimental results show that the bi-level formulation provides a plausible tool for model selection.
引用
收藏
页码:41 / 51
页数:11
相关论文
共 18 条
  • [1] Bennett K. P., 1992, TECHNICAL REPORT
  • [2] Bradley P. S., 1998, INFORMS Journal on Computing, V10, P209, DOI 10.1287/ijoc.10.2.209
  • [3] Choosing multiple parameters for support vector machines
    Chapelle, O
    Vapnik, V
    Bousquet, O
    Mukherjee, S
    [J]. MACHINE LEARNING, 2002, 46 (1-3) : 131 - 159
  • [4] Chapelle O, 2000, ADV NEURAL INFORM PR, V12
  • [5] CHIN J, 1994, CLIN PERINATOL, V21, P1, DOI 10.1016/0305-0548(94)90057-4
  • [6] Recent progress in unconstrained nonlinear optimization without derivatives
    Conn, AR
    Scheinberg, K
    Toint, PL
    [J]. MATHEMATICAL PROGRAMMING, 1997, 79 (1-3) : 397 - 414
  • [7] Cristianini N., 2000, INTRO SUPPORT VECTOR
  • [8] Fan E., 2002, GLOBAL OPTIMIZATION
  • [9] Fourer R, 2002, AMPL MATH PROGRAMMIN
  • [10] Jaakkola TS, 1999, ADV NEUR IN, V11, P487