A MULTIDIMENSIONAL INTEGRATION BY PARTS FORMULA FOR THE HENSTOCK-KURZWEIL INTEGRAL

被引:0
|
作者
Lee, Tuo-Yeong [1 ]
机构
[1] Nanyang Technol Univ, Natl Inst Educ, Math & Math Educ, 1 Nanyang Walk, Singapore 637616, Singapore
来源
MATHEMATICA BOHEMICA | 2008年 / 133卷 / 01期
关键词
Henstock-Kurzweil integral; bounded variation in the sense of Hardy-Krause; integration by parts;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that if g is of bounded variation in the sense of Hardy-Krause on Pi(m)(i=1) [a(i), b(i)], then g chi (m)(Pi i=1) ((ai, bi)) is of bounded variation there. As a result, we obtain a simple proof of Kurzweil's multidimensional integration by parts formula.
引用
收藏
页码:63 / 74
页数:12
相关论文
共 50 条
  • [1] INTEGRATION BY PARTS FOR THE Lr HENSTOCK-KURZWEIL INTEGRAL
    Musial, Paul
    Tulone, Francesco
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [2] HENSTOCK-KURZWEIL INTEGRAL ON BV SETS
    Maly, Jan
    Pfeffer, Washek F.
    MATHEMATICA BOHEMICA, 2016, 141 (02): : 217 - 237
  • [3] LAPLACE TRANSFORM USING THE HENSTOCK-KURZWEIL INTEGRAL
    Sanchez-Perales, Salvador
    Tenorio, Jesus F.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2014, 55 (01): : 71 - 81
  • [4] HENSTOCK-KURZWEIL INTEGRATION ON METRIC SPACES REVISITED
    Kainth, Surinder Pal Singh
    Singh, Narinder
    REAL ANALYSIS EXCHANGE, 2022, 47 (02) : 377 - 396
  • [5] Denjoy integral and Henstock-Kurzweil integral in vector lattices, I
    Toshiharu Kawasaki
    Czechoslovak Mathematical Journal, 2009, 59 : 381 - 399
  • [6] DENJOY INTEGRAL AND HENSTOCK-KURZWEIL INTEGRAL IN VECTOR LATTICES, II
    Kawasaki, Toshiharu
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (02) : 401 - 417
  • [7] THE DARBOUX PROBLEM INVOLVING THE DISTRIBUTIONAL HENSTOCK-KURZWEIL INTEGRAL
    Lu, Yueping
    Ye, Guoju
    Wang, Ying
    Liu, Wei
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2012, 55 : 197 - 205
  • [8] Differential and integral equations with Henstock-Kurzweil integrable functions
    Heikkila, S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (01) : 171 - 179
  • [9] On Ito-Kurzweil-Henstock integral and integration-by-part formula
    Tin-Lam T.
    Tuan-Seng C.
    Czechoslovak Mathematical Journal, 2005, 55 (3) : 653 - 663
  • [10] On Ito-Kurzweil-Henstock integral and integration-by-part formula
    Toh, TL
    Chew, TS
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2005, 55 (03) : 653 - 663