FUZZY kNNMODEL APPLIED TO PREDICTIVE TOXICOLOGY DATA MINING

被引:4
作者
Guo, Gongde [1 ]
Neagu, Daniel [1 ]
机构
[1] Univ Bradford, Dept Comp, Bradford BD7 1DP, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Fuzzy kNNModel; classification; predictive toxicology;
D O I
10.1142/S1469026805001635
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A robust method, fuzzy kNNModel, for toxicity prediction of chemical compounds is proposed. The method is based on a supervised clustering method, called kNNModel, which employs fuzzy partitioning instead of crisp partitioning to group clusters. The merits of fuzzy kNNModel are two-fold: (1) it overcomes the problems of choosing the parameter e-allowed error rate in a cluster and the parameter N - minimal number of instances covered by a cluster, for each data set; (2) it better captures the characteristics of boundary data by assigning them with different degrees of membership between 0 and 1 to different clusters. The experimental results of fuzzy kNNModel conducted on thirteen public data sets from UCI machine learning repository and seven toxicity data sets from real-world applications, are compared with the results of fuzzy c-means clustering, k-means clustering, kNN, fuzzy kNN, and kNNModel in terms of classification performance. This application shows that fuzzy kNNModel is a promising method for the toxicity prediction of chemical compounds.
引用
收藏
页码:321 / 333
页数:13
相关论文
共 50 条
[31]   lazar: a modular predictive toxicology framework [J].
Maunz, Andreas ;
Gutlein, Martin ;
Rautenberg, Micha ;
Vorgrimmler, David ;
Gebele, Denis ;
Helma, Christoph .
FRONTIERS IN PHARMACOLOGY, 2013, 4
[32]   Towards model governance in predictive toxicology [J].
Palczewska, Anna ;
Fu, Xin ;
Trundle, Paul ;
Yang, Longzhi ;
Neagu, Daniel ;
Ridley, Mick ;
Travis, Kim .
INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2013, 33 (03) :567-582
[33]   Alternative animal models in predictive toxicology [J].
Khabib, Muhammad Nur Hamizan ;
Sivasanku, Yogeethaa ;
Lee, Hong Boon ;
Kumar, Suresh ;
Kue, Chin Siang .
TOXICOLOGY, 2022, 465
[34]   Elementary predictive toxicology for advanced applications [J].
Kreatsoulas, Constantine ;
Durham, Stephen K. ;
Custer, Laura L. ;
Pearl, Greg M. .
OPTIMIZING THE DRUG-LIKE PROPERTIES OF LEADS IN DRUG DISCOVERY, 2006, 4 :301-+
[35]   Evaluation of Predictive Data Mining Algorithms in Soil Data Classification for Optimized Crop Recommendation [J].
Arooj, Ansif ;
Riaz, Mohsin ;
Akram, Malik Naeem .
2018 INTERNATIONAL CONFERENCE ON ADVANCEMENTS IN COMPUTATIONAL SCIENCES (ICACS), 2018, :8-+
[36]   Data mining applied to the cognitive rehabilitation of patients with acquired brain injury [J].
Marcano-Cedeno, A. ;
Chausa, Paloma ;
Garcia, Alejandro ;
Caceres, Cesar ;
Tormos, Josep M. ;
Gomez, Enrique J. .
EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (04) :1054-1060
[37]   Predictive data mining in clinical medicine: a focus on selected methods and applications [J].
Bellazzi, Riccardo ;
Ferrazzi, Fulvia ;
Sacchi, Lucia .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 1 (05) :416-430
[38]   Predictive models of academic risk in computing careers with educational data mining [J].
Ayala Franco, Enrique ;
Lopez Martinez, Rocio Edith ;
Menendez Dominguez, Victor Hugo .
RED-REVISTA DE EDUCACION A DISTANCIA, 2021, 21 (66)
[39]   Predictive Data Mining Techniques for Fault Diagnosis of Electric Equipment: A Review [J].
Contreras-Valdes, Arantxa ;
Amezquita-Sanchez, Juan P. ;
Granados-Lieberman, David ;
Valtierra-Rodriguez, Martin .
APPLIED SCIENCES-BASEL, 2020, 10 (03)
[40]   Learning Diatom Ecological Models with Fuzzy Order Data Mining Algorithm [J].
Naumoski, A. ;
Mirceva, G. ;
Trivodaliev, K. ;
Mitreski, K. .
2018 41ST INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2018, :1059-1063