THE STUDY OF ELECTROLYTE-SOLUTIONS BASED ON ETHYLENE AND DIETHYL CARBONATES FOR RECHARGEABLE LI BATTERIES .2. GRAPHITE-ELECTRODES

被引:409
作者
AURBACH, D [1 ]
EINELI, Y [1 ]
MARKOVSKY, B [1 ]
ZABAN, A [1 ]
LUSKI, S [1 ]
CARMELI, Y [1 ]
YAMIN, H [1 ]
机构
[1] TADIRAN,DIV BATTERY,IL-76100 REHOVOT,ISRAEL
关键词
D O I
10.1149/1.2048659
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrochemical behavior of Li-graphite intercalation anodes in ethylene and diethyl carbonates (EC-DEC) solutions was studied using surface sensitive Fourier transform infrared spectroscopy (FTIR) and impedance spectroscopy in conjunction with standard electrochemical techniques. Three different solvent combinations, four different salts: LiBF4, LiPF6, LiClO4, and LiAsF6, and the influence of the presence of CO2 were investigated. Graphite electrodes could be cycled hundreds of times obtaining a reasonable reversible capacity. The best electrolyte was found to be LiAsF6 and the presence of CO2 in solutions considerably increased the reversible capacity upon cycling. This improved performance is due to precipitation of the ethylene carbonate reduction product, (CH2OCO2Li)(2), which is an excellent passivating agent, on the electrode surface. Aging processes of these surface films and their influence on the electrode properties are discussed.
引用
收藏
页码:2882 / 2890
页数:9
相关论文
共 21 条
[1]   THE SURFACE-CHEMISTRY OF LITHIUM ELECTRODES IN ALKYL CARBONATE SOLUTIONS [J].
AURBACH, D ;
EINELY, Y ;
ZABAN, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (01) :L1-L3
[2]   CORRELATION BETWEEN SURFACE-CHEMISTRY, MORPHOLOGY, CYCLING EFFICIENCY AND INTERFACIAL PROPERTIES OF LI ELECTRODES IN SOLUTIONS CONTAINING DIFFERENT LI SALTS [J].
AURBACH, D ;
WEISSMAN, I ;
ZABAN, A ;
CHUSID, O .
ELECTROCHIMICA ACTA, 1994, 39 (01) :51-71
[3]   THE STUDY OF LI-GRAPHITE INTERCALATION PROCESSES IN SEVERAL ELECTROLYTE SYSTEMS USING IN-SITU X-RAY-DIFFRACTION [J].
AURBACH, D ;
EINELI, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (06) :1746-1752
[4]   IMPEDANCE SPECTROSCOPY OF LITHIUM ELECTRODES .2. THE BEHAVIOR IN PROPYLENE CARBONATE SOLUTIONS - THE SIGNIFICANCE OF THE DATA OBTAINED [J].
AURBACH, D ;
ZABAN, A .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1994, 367 (1-2) :15-25
[5]   IMPEDANCE SPECTROSCOPY OF NONACTIVE METAL-ELECTRODES AT LOW POTENTIALS IN PROPYLENE CARBONATE SOLUTIONS - A COMPARISON TO STUDIES OF LI ELECTRODES [J].
AURBACH, D ;
ZABAN, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (07) :1808-1819
[6]   IDENTIFICATION OF SURFACE-FILMS FORMED ON LITHIUM IN PROPYLENE CARBONATE SOLUTIONS [J].
AURBACH, D ;
DAROUX, ML ;
FAGUY, PW ;
YEAGER, E .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (07) :1611-1620
[7]   THE BEHAVIOR OF LITHIUM ELECTRODES IN PROPYLENE AND ETHYLENE CARBONATE - THE MAJOR FACTORS THAT INFLUENCE LI CYCLING EFFICIENCY [J].
AURBACH, D ;
GOFER, Y ;
BENZION, M ;
APED, P .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1992, 339 (1-2) :451-471
[8]   THE CORRELATION BETWEEN THE SURFACE-CHEMISTRY AND THE PERFORMANCE OF LI-CARBON INTERCALATION ANODES FOR RECHARGEABLE ROCKING-CHAIR TYPE BATTERIES [J].
AURBACH, D ;
EINELI, Y ;
CHUSID, O ;
CARMELI, Y ;
BABAI, M ;
YAMIN, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (03) :603-611
[9]   THE STUDY OF ELECTROLYTE-SOLUTIONS BASED ON ETHYLENE AND DIETHYL CARBONATES FOR RECHARGEABLE LI BATTERIES .1. LI METAL ANODES [J].
AURBACH, D ;
ZABAN, A ;
SCHECHTER, A ;
EINELI, Y ;
ZINIGRAD, E ;
MARKOVSKY, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (09) :2873-2882
[10]  
AURBACH D, 1994, ELECTROCHIM ACTA, V39, P2559