GPI-ANCHORED INFLUENZA HEMAGGLUTININ INDUCES HEMIFUSION TO BOTH RED-BLOOD-CELL AND PLANAR BILAYER-MEMBRANES

被引:211
作者
MELIKYAN, GB [1 ]
WHITE, JM [1 ]
COHEN, FS [1 ]
机构
[1] UNIV VIRGINIA, HLTH SCI CTR, DEPT CELL BIOL, CHARLOTTESVILLE, VA 22908 USA
关键词
D O I
10.1083/jcb.131.3.679
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Under fusogenic conditions, fluorescent dye redistributed from the outer monolayer leaflet of red blood cells (RBCs) to cells expressing glycophosphatidylinositol-anchored influenza virus hemagglutinin (GPI-HA) without transfer of aqueous dye. This suggests that hemifusion, but not full fusion, occurred (Kemble, G. W., T. Danieli, and J. M. White. 1994. Cell. 76:383-391). We extended the evidence for hemifusion by labeling the inner monolayer leaflets of RBCs with FM4-64 and observing that these inner leaflets did not become continuous with GPI-HA-expressing cells. The region of hemifusion-separated aqueous contents, the hemifusion diaphragm, appeared to be extended and was long-lived. But when RBCs hemifused to GPI-HA-expressing cells were osmotically swollen, some diaphragms were disrupted, and spread of both inner leaflet and aqueous dyes was observed. This was characteristic of full fusion: inner leaflet and aqueous probes spread to cells expressing wild-type HA (wt-HA). By simultaneous video fluorescence microscopy and time-resolved electrical admittance measurements, we rigorously demonstrated that GPI-HA-expressing cells hemifuse to planar bilayer membranes: lipid continuity was established without formation of fusion pores. The hemifusion area became large. In contrast, for cells expressing wt-HA, before lipid dye spread, fusion pores were always observed, establishing that full fusion occurred. We present an elastic coupling model in which the ectodomain of wt-HA induces hemifusion and the transmembrane domain, absent in the GPI-KA-expressing cells, mediates full fusion.
引用
收藏
页码:679 / 691
页数:13
相关论文
共 62 条
[1]  
AHKONG QF, 1987, J CELL SCI, V88, P389
[2]   EXOCYTOSIS [J].
ALMERS, W .
ANNUAL REVIEW OF PHYSIOLOGY, 1990, 52 :607-624
[3]   POTOCYTOSIS - SEQUESTRATION AND TRANSPORT OF SMALL MOLECULES BY CAVEOLAE [J].
ANDERSON, RGW ;
KAMEN, BA ;
ROTHBERG, KG ;
LACEY, SW .
SCIENCE, 1992, 255 (5043) :410-411
[4]   AN ARCHITECTURE FOR THE FUSION SITE OF INFLUENZA HEMAGGLUTININ [J].
BENTZ, J ;
ELLENS, H ;
ALFORD, D .
FEBS LETTERS, 1990, 276 (1-2) :1-5
[5]   ACTIVITY-DEPENDENT FLUORESCENT STAINING AND DESTAINING OF LIVING VERTEBRATE MOTOR-NERVE TERMINALS [J].
BETZ, WJ ;
MAO, F ;
BEWICK, GS .
JOURNAL OF NEUROSCIENCE, 1992, 12 (02) :363-375
[6]   STRUCTURE OF INFLUENZA HEMAGGLUTININ AT THE PH OF MEMBRANE-FUSION [J].
BULLOUGH, PA ;
HUGHSON, FM ;
SKEHEL, JJ ;
WILEY, DC .
NATURE, 1994, 371 (6492) :37-43
[7]   A SPRING-LOADED MECHANISM FOR THE CONFORMATIONAL CHANGE OF INFLUENZA HEMAGGLUTININ [J].
CARR, CM ;
KIM, PS .
CELL, 1993, 73 (04) :823-832
[8]   THE HEMIFUSION INTERMEDIATE AND ITS CONVERSION TO COMPLETE FUSION - REGULATION BY MEMBRANE-COMPOSITION [J].
CHERNOMORDIK, L ;
CHANTURIYA, A ;
GREEN, J ;
ZIMMERBERG, J .
BIOPHYSICAL JOURNAL, 1995, 69 (03) :922-929
[9]   BIOMEMBRANE FUSION - A NEW CONCEPT DERIVED FROM MODEL STUDIES USING 2 INTERACTING PLANAR LIPID BILAYERS [J].
CHERNOMORDIK, LV ;
MELIKYAN, GB ;
CHIZMADZHEV, YA .
BIOCHIMICA ET BIOPHYSICA ACTA, 1987, 906 (03) :309-352
[10]  
DOMS RW, 1985, J BIOL CHEM, V260, P2973