ALGEBRAIC AND TOPOLOGICAL EQUIVALENCES IN THE STONE-CECH COMPACTIFICATION OF A DISCRETE SEMIGROUP

被引:2
作者
HINDMAN, N [1 ]
STRAUSS, D [1 ]
机构
[1] UNIV HULL,SCH MATH,KINGSTON HULL H76 7RX,N HUMBERSIDE,ENGLAND
基金
美国国家科学基金会;
关键词
BETA-N; STONE-CECH COMPACTIFICATION; COMPACT RIGHT TOPOLOGICAL SEMIGROUP;
D O I
10.1016/0166-8641(95)00032-C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Stone-Cech compactification beta S of a countably infinite discrete commutative semigroup S. We show that, under a certain condition satisfied by all cancellative semigroups S, the minimal right ideals of beta S will belong to 2(c) homeomorphism classes. We also show that the maximal groups in a given minimal left ideal will belong to 2(c) homeomorphism classes. The subsets of PS of the form S + e, where e denotes an idempotent, will also belong to 2(c) homeomorphism classes. All the left ideals of beta N of the form beta N + e, where e denotes a nonminimal idempotent of beta N, will be different as right topological semigroups. If e denotes a nonminimal idempotent of beta Z, e + beta Z will be topologically and algebraically isomorphic to precisely one other principal right ideal of beta Z defined by an idempotent: -e + beta Z. The corresponding statement for left ideals is also valid.
引用
收藏
页码:185 / 198
页数:14
相关论文
共 10 条
  • [1] Berglund J. F., 1989, ANAL SEMIGROUPS
  • [2] Comfort W.W., 1974, THEORY ULTRAFILTERS
  • [3] ELLIS R, 1969, LECTURES TOPOLOGICAL
  • [4] HINDMAN N, 1990, EXP MATH, V1, P347
  • [5] HINDMAN N, IN PRESS P EDINBURGH
  • [6] KUNEN K, 1984, HDB SET THEORETIC TO
  • [7] KUNEN K, 1978, C MATH SOC J BOLYAI, V23, P741
  • [8] RUPPERT W, 1984, LECTURE NOTES MATH, V1079
  • [9] SEMIGROUP STRUCTURES ON BETA-N
    STRAUSS, D
    [J]. SEMIGROUP FORUM, 1992, 44 (02) : 238 - 244
  • [10] IDEALS AND COMMUTATIVITY IN BETA-N
    STRAUSS, D
    [J]. TOPOLOGY AND ITS APPLICATIONS, 1994, 60 (03) : 281 - 293