C1-CURVED FINITE-ELEMENTS WITH NUMERICAL-INTEGRATION FOR THIN PLATE AND THIN SHELL PROBLEMS .2. APPROXIMATION OF THIN PLATE AND THIN SHELL PROBLEMS

被引:12
作者
BERNADOU, M
机构
[1] INRIA, Domaine de Voluceau, Rocquencourt
关键词
D O I
10.1016/0045-7825(93)90056-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we study the approximation of solutions of linear thin shell problems formulated on plane reference domains with curved boundary, according to the model of W.T. Koiter. Sufficient conditions are given which preserve the order of convergence of the method. These conditions involve both the approximation of the components of the displacement with straight and curved finite element families of class C1, and the degree of accuracy of the numerical quadrature schemes. We conclude by examining various examples. As a particular case, we apply the results to plate bending problems.
引用
收藏
页码:389 / 421
页数:33
相关论文
共 21 条
[1]   TUBA FAMILY OF PLATE ELEMENTS FOR MATRIX DISP LACEMENT METHOD [J].
ARGYRIS, JH ;
FRIED, I ;
SCHARPF, DW .
AERONAUTICAL JOURNAL, 1968, 72 (692) :701-&
[2]  
Bell K., 1969, International Journal for Numerical Methods in Engineering, V1, P101, DOI 10.1002/nme.1620010108
[5]  
BERNADOU M, UNPUB APPROXIMATION
[6]  
BERNADOU M, 1993, IN PRESS COMPUT METH
[7]  
Bernadou M., 1976, LECT NOTES EC MATH S, V134, P89
[8]  
BERNADOU M, 1982, FINITE ELEMENT METHO
[9]   ESTIMATION OF LINEAR FUNCTIONALS ON SOBOLEV SPACES WITH APPLICATION TO FOURIER TRANSFORMS AND SPLINE INTERPOLATION [J].
BRAMBLE, JH ;
HILBERT, SR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (01) :112-&
[10]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO