SOLVENT EFFECTS ON THE CONFORMATIONAL EQUILIBRIUM OF 1,1,2-TRICHLOROETHANE

被引:10
|
作者
ABRAHAM, MH
ABRAHAM, RJ
LEONARD, P
TRUE, NS
SUAREZ, C
机构
[1] UNIV LIVERPOOL,SCH CHEM,LIVERPOOL L69 3BX,ENGLAND
[2] UNIV CALIF DAVIS,DEPT CHEM,DAVIS,CA 95616
关键词
D O I
10.1039/p29910000463
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
Proton coupling constants, J, and proton chemical shifts, delta-(CH) and delta-(CH2), are reported for 1,1,2-trichloroethane in 32 protic and aprotic solvents, and in the gas phase. These have been analysed in terms of a conformational equilibrium between conformers I and II using multiple linear regression analysis through the Abraham-Kamlet-Taft equation. The main solvent influence on all three NMR parameters arises through reaction field effects as modelled by the Kamlet-Taft solvent dipolarity parameter pi-1x. There is a small effect of solvent hydrogen-bond basicity on delta-(CH) but not on delta-(CH2) indicating that the CHCl2 proton is slightly acidic. A similar effect of solvent basicity on the coupling constant J shows that not only is conformer II more dipolar than conformer I but that the CHCl2 proton in II is more acidic than the CHCl2 proton in I. The gas phase values of J, delta-(CH) and delta-(CH2) are more comparable with a suggested value of -0.4 for pi-1x than with the directly measured value of - 1.1 units.
引用
收藏
页码:463 / 466
页数:4
相关论文
共 50 条
  • [1] A study of conformational equilibrium of 1,1,2-trichloroethane in FAU-type zeolites
    Buin, Andrei
    Wang, Haiyan
    Consta, Styliani
    Huang, Yining
    MICROPOROUS AND MESOPOROUS MATERIALS, 2014, 183 : 207 - 217
  • [2] Energetics of conformational conversion between 1,1,2-trichloroethane polymorphs
    Bujak, Maciej
    Podsiadlo, Marcin
    Katrusiak, Andrzej
    CHEMICAL COMMUNICATIONS, 2008, (37) : 4439 - 4441
  • [3] Influence of the solvation model and the solvent on the gauche-trans equilibrium of 1,1,2-trichloroethane
    Iribarren, JI
    Casanovas, J
    Zanuy, D
    Alemán, C
    CHEMICAL PHYSICS, 2004, 302 (1-3) : 77 - 83
  • [4] VIBRATIONAL AND HIGH-PRESSURE CONFORMATIONAL STUDIES OF 1,1,2-TRICHLOROETHANE
    CHRISTIAN, SD
    GRUNDNES, J
    KLAEBOE, P
    NIELSEN, CJ
    WOLDBAEK, T
    JOURNAL OF MOLECULAR STRUCTURE, 1976, 34 (01) : 33 - 45
  • [5] DEHYDROCHLORINATION OF WASTE 1,1,2-TRICHLOROETHANE
    MILCHERT, E
    PAZDZIOCH, W
    MYSZKOWSKI, J
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1995, 34 (06) : 2138 - 2141
  • [6] TOXICOLOGY OF 1,1,2-TRICHLOROETHANE IN THE MOUSE
    WHITE, KL
    SANDERS, VM
    BARNES, DW
    SHOPP, GM
    MUNSON, AE
    DRUG AND CHEMICAL TOXICOLOGY, 1985, 8 (05) : 333 - 355
  • [7] PRESSURE EFFECTS ON CONFORMATIONAL EQUILIBRIA - DIFFERENCE IN VOLUME BETWEEN CONFORMERS OF 1,1,2-TRICHLOROETHANE
    CHRISTIAN, SD
    GRUNDNES, J
    KLABOE, P
    JOURNAL OF CHEMICAL PHYSICS, 1976, 65 (01): : 496 - 498
  • [8] THERMODYNAMIC FUNCTIONS OF 1,1,2-TRICHLOROETHANE
    HARRISON, RH
    KOBE, KA
    JOURNAL OF CHEMICAL PHYSICS, 1957, 26 (06): : 1411 - 1415
  • [9] Simultaneous Orientational and Conformational Molecular Dynamics in Solid 1,1,2-Trichloroethane
    Romanini, Michela
    Mitsari, Efstratia
    Tripathi, Pragya
    Serra, Pablo
    Zuriaga, Mariano
    Lluis Tamarit, Josep
    Macovez, Roberto
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (10): : 5774 - 5783
  • [10] PHASE-DIAGRAM OF 1,1,2-TRICHLOROETHANE
    BABB, SE
    CHRISTIAN, SD
    JOURNAL OF CHEMICAL PHYSICS, 1977, 66 (10): : 4713 - 4714