CHAOTIC MOTIONS IN VIBRATING MOLECULES - THE GENERALIZED HENON-HEILES MODEL

被引:7
作者
RAMASWAMY, R
机构
关键词
D O I
10.1016/0301-0104(83)85046-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
引用
收藏
页码:15 / 24
页数:10
相关论文
共 43 条
[1]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :715-721
[2]  
ABRAHAM R, 1978, F MECHANICS
[3]  
Arnold V., 1968, ERGODIC PROBLEMS CLA, P6
[4]  
Arnold V. I, 1989, MATH METHODS CLASSIC, VSecond, DOI DOI 10.1007/978-1-4757-1693-1
[5]   ON ISOLATING CHARACTER OF 3RD INTEGRAL IN A RESONANCE CASE [J].
BARBANIS, B .
ASTRONOMICAL JOURNAL, 1966, 71 (06) :415-&
[6]   KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS [J].
BENETTIN, G ;
GALGANI, L ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1976, 14 (06) :2338-2345
[7]  
Berry M. V., 1978, AIP C P, V46, P16, DOI DOI 10.1063/1.31417
[8]   SEMICLASSICAL MECHANICS IN PHASE SPACE - STUDY OF WIGNERS FUNCTION [J].
BERRY, MV .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 287 (1343) :237-271
[9]   QUANTIZING A CLASSICALLY ERGODIC SYSTEM - SINAI BILLIARD AND THE KKR METHOD [J].
BERRY, MV .
ANNALS OF PHYSICS, 1981, 131 (01) :163-216
[10]   INTEGRABLE HAMILTONIAN-SYSTEMS AND THE PAINLEVE PROPERTY [J].
BOUNTIS, T ;
SEGUR, H ;
VIVALDI, F .
PHYSICAL REVIEW A, 1982, 25 (03) :1257-1264