MINIMAX BAYES ESTIMATION IN NONPARAMETRIC REGRESSION

被引:2
作者
HECKMAN, NE [1 ]
WOODROOFE, M [1 ]
机构
[1] UNIV MICHIGAN,DEPT STAT,ANN ARBOR,MI 48109
关键词
MINIMAX ESTIMATES; BAYES ESTIMATES; NONPARAMETRIC REGRESSION; SMOOTHING;
D O I
10.1214/aos/1176348383
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
One observes n data points, (t(i), Y(i)), with the mean of Y(i), conditional on the regression function f, equal to f(t(i)). The prior distribution of the vector f = (f(t1),..., f(t(n)))t is unknown, but ties in a known class-OMEGA. An estimator, f, of f is found which minimizes the maximum E parallel-to f - f parallel-to 2. The maximum is taken over all priors in OMEGA and the minimum is taken over linear estimators of f. Asymptotic properties of the estimator are studied in the case that t(i) is one-dimensional and OMEGA is the set of priors for which f is smooth.
引用
收藏
页码:2003 / 2014
页数:12
相关论文
共 50 条
[21]   Minimax-optimal and Locally-adaptive Online Nonparametric Regression [J].
Liautaud, Paul ;
Gaillard, Pierre ;
Wintenberger, Olivier .
ALGORITHMIC LEARNING THEORY, 2025, 272
[22]   Minimax-rate adaptive nonparametric regression with unknown correlations of errors [J].
Yang, Guowu ;
Yang, Yuhong .
SCIENCE CHINA-MATHEMATICS, 2019, 62 (02) :227-244
[23]   Minimax-rate adaptive nonparametric regression with unknown correlations of errors [J].
Guowu Yang ;
Yuhong Yang .
Science China Mathematics, 2019, 62 :227-244
[24]   General empirical Bayes wavelet methods and exactly adaptive minimax estimation [J].
Zhang, CH .
ANNALS OF STATISTICS, 2005, 33 (01) :54-100
[25]   Double smoothing estimation of the multivariate regression function in nonparametric regression [J].
Hwang, RC ;
Ken, ML .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (03) :419-434
[26]   Minimax optimal designs for nonparametric regression - A further optimality property of the uniform distribution [J].
Biedermann, S ;
Dette, H .
MODA6 ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, 2001, :13-20
[27]   Minimax exact constant in sup-norm for nonparametric regression with random design [J].
Bertin, K .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 123 (02) :225-242
[28]   On the estimation of a monotone conditional variance in nonparametric regression [J].
Dette, Holger ;
Pilz, Kay .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2009, 61 (01) :111-141
[29]   Efficient estimation of additive nonparametric regression models [J].
Linton, OB .
BIOMETRIKA, 1997, 84 (02) :469-473
[30]   Change point estimation using nonparametric regression [J].
Loader, CR .
ANNALS OF STATISTICS, 1996, 24 (04) :1667-1678