ON VALUES OF THE RIEMANN ZETA FUNCTION AT INTEGRAL ARGUMENTS

被引:8
作者
EWELL, JA [1 ]
机构
[1] NO ILLINOIS UNIV,DEPT MATH SCI,DE KALB,IL 60115
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 1991年 / 34卷 / 01期
关键词
RIEMANN ZETA FUNCTION;
D O I
10.4153/CMB-1991-010-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each nonnegative integer r, [GRAPHICS] is represented by a multiple series which is expressed in terms of rational numbers and the special values of the zeta function zeta-(2h),h = 1,2,.... Thus, the set {zeta-(2h)\h = 1,2,...} serves a kind of basis for expressing all of the values zeta-(s),s = 2,3,....
引用
收藏
页码:60 / 66
页数:7
相关论文
共 8 条
[1]  
APERY R, 1979, ASTERISQUE, V61, P11
[2]  
Apostol T. M., 1976, INTRO ANAL NUMBER TH, DOI DOI 10.1007/978-1-4757-5579-4
[3]   AN ELEMENTARY PROOF OF INFINITY-SIGMA-N=1-1/N2=PI-2/6 [J].
CHOE, BR .
AMERICAN MATHEMATICAL MONTHLY, 1987, 94 (07) :662-663
[4]  
COURANT R, 1957, DIFFERENTIAL INTEGRA
[5]   A NEW SERIES REPRESENTATION FOR ZETA(3) [J].
EWELL, JA .
AMERICAN MATHEMATICAL MONTHLY, 1990, 97 (03) :219-220
[6]  
GROSSWALD E, 1970, NACHR AKAD WISS G MP, V2, P9
[7]  
RAMANUJAN S, 1957, NOTEBOOKS SRINIVASA
[8]  
[No title captured]