FINDING K-POINTS WITH MINIMUM DIAMETER AND RELATED PROBLEMS

被引:63
作者
AGGARWAL, A
IMAI, H
KATOH, N
SURI, S
机构
[1] IBM CORP,THOMAS J WATSON RES CTR,YORKTOWN HTS,NY 10598
[2] KYUSHU UNIV,FUKUOKA 812,JAPAN
[3] KOBE UNIV COMMERCE,KOBE,JAPAN
[4] BELL COMMUN RES INC,MORRISTOWN,NJ 07960
关键词
D O I
10.1016/0196-6774(91)90022-Q
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let S be a set consisting of n points in the plane. We consider the problem of finding k points of S that form a "small" set under some given measure, and present efficient algorithms for several natural measures including the diameter and the variance. © 1991.
引用
收藏
页码:38 / 56
页数:19
相关论文
共 15 条
  • [1] A LINEAR-TIME ALGORITHM FOR COMPUTING THE VORONOI DIAGRAM OF A CONVEX POLYGON
    AGGARWAL, A
    GUIBAS, LJ
    SAXE, J
    SHOR, PW
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (06) : 591 - 604
  • [2] AGGARWAL A, 1989, 3RD P ANN ACM S COMP, P278
  • [3] Andrews HC, 1972, INTRO MATH TECHNIQUE
  • [4] ASANO T, 1990, 6TH P INT C THEOR AP
  • [5] ASANO T, 1988, 4TH P ANN ACM S COMP, P252
  • [6] VORONOI DIAGRAMS AND ARRANGEMENTS
    EDELSBRUNNER, H
    SEIDEL, R
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (01) : 25 - 44
  • [7] EPPSTEIN D, IN PRESS DISCRETE CO
  • [8] Hartigan JohnA., 1975, CLUSTERING ALGORITHM
  • [9] HERSHBERGER J, 1989, 5TH P ANN ACM S COMP
  • [10] HERSHBERGER J, IN PRESS J ALGORITHM