On the rate of convergence of iterated exponentials

被引:0
|
作者
Gao, Fuchang [1 ]
Han, Lixing [2 ]
Schilling, Kenneth [2 ]
机构
[1] Univ Idaho, Dept Math, Moscow, ID 83844 USA
[2] Univ Michigan Flint, Dept Math, Flint, MI 48502 USA
关键词
Iterated exponentials; Rate of convergence;
D O I
10.1007/s12190-011-0511-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic rate of convergence of the sequence of iterated exponentials {z(1) = a, z(n+1) = a(zn), n >= 1}. We show that z(n) converges at a linear rate if a is in the interior of the Baker-Rippon convergence region and at a sublinear rate if a is on its boundary. A precise characterization of the rate is explored when the sequence converges sublinearly.
引用
收藏
页码:89 / 96
页数:8
相关论文
共 50 条