The phosphorescence properties of liver alcohol dehydrogenase from horse were characterized at limiting concentrations of coenzyme and coenzyme analogues. The emission decay kinetics of Trp-314 in strong, slowly exchanging, ternary complexes with NADH/isobutyramide, NAD/pyrazole, and NADH / dimethyl sulfoxide displays a markedly nonexponential character. The analysis of decay components over the saturation curve reveals that the phosphorescence from singly bound protein molecules has a lifetime from 1 to 1.3 s, which is 2–3 times larger than observed with fully bound and unliganded enzyme. The remarkably tighter configuration reported by the triplet probe for the coenzyme-binding domain in half-saturated macromolecules is not exclusive of strongly inhibited ternary complexes. Measurements on binary complexes with NADH, ADPR, and the inactive coenzyme analogue 1,4,5,6-tetrahydronicotinamide adenine dinucleotide confirm that binding of the ligand to one subunit has qualitatively the same influence on protein structure. If the lifetime of Trp-314 provides clear evidence for an appreciable change in conformation at half-binding that is apparently triggered by the ADPR fragment of the coenzyme, such communication between subunits does not lead to allosteric phenomena in coenzyme binding. © 1990, American Chemical Society. All rights reserved.