NEIGHBOR SUM DISTINGUISHING COLORING OF SOME GRAPHS

被引:23
作者
Dong, Aijun [1 ]
Wang, Guanghui [2 ]
机构
[1] Shandong Jiao Tong Univ, Sch Sci, Jinan 250023, Shandong, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Proper coloring; neighbor sum distinguishing coloring; planar graph;
D O I
10.1142/S1793830912500474
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A proper [k]-edge coloring of a graph G is a proper edge coloring of G using colors of the set [k] = {1, 2, ... , k}. A neighbor sum distinguishing [k]-edge coloring of G is a proper [k]-edge coloring of G such that for each edge is an element of E(G), the sum of colors taken on the edges incident to u is different from the sum of colors taken on the edges incident to v. By (ndi)(Sigma)(G), we denote the smallest value k in such a coloring of G. In this paper, we obtain that (1) (ndi)(Sigma)( G) <= max{2 Delta(G) + 1, 25} if G is a planar graph, (2) (ndi)(Sigma)(G) <= max{2 Delta(G), 19} if G is a graph such that mad(G) <= 5.
引用
收藏
页数:12
相关论文
共 14 条
[1]   Degree constrained subgraphs [J].
Addario-Berry, L. ;
Dalal, K. ;
Reed, B. A. .
DISCRETE APPLIED MATHEMATICS, 2008, 156 (07) :1168-1174
[2]   Vertex-colouring edge-weightings [J].
Addario-Berry, Louigi ;
Dalal, Ketan ;
McDiarmid, Colin ;
Reed, Bruce A. ;
Thomason, Andrew .
COMBINATORICA, 2007, 27 (01) :1-12
[3]   r-Strong edge colorings of graphs [J].
Akbari, S. ;
Bidkhori, H. ;
Nosrati, N. .
DISCRETE MATHEMATICS, 2006, 306 (23) :3005-3010
[4]   Adjacent vertex distinguishing edge-colorings [J].
Balister, P. N. ;
Gyori, E. ;
Lehel, J. ;
Schelp, R. H. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (01) :237-250
[5]  
Bondy J.A., 2008, GRADUATE TEXTS MATH
[6]   On the neighbour-distinguishing index of a graph [J].
Edwards, Keith ;
Hornak, Mirko ;
Wozniak, Mariusz .
GRAPHS AND COMBINATORICS, 2006, 22 (03) :341-350
[7]   Neighbor Sum Distinguishing Index [J].
Flandrin, Evelyne ;
Marczyk, Antoni ;
Przybylo, Jakub ;
Sacle, Jean-Francois ;
Wozniak, Mariusz .
GRAPHS AND COMBINATORICS, 2013, 29 (05) :1329-1336
[8]   Δ+300 is a bound on the adjacent vertex distinguishing edge chromatic number [J].
Hatami, H .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 95 (02) :246-256
[9]   Vertex-coloring edge-weightings: Towards the 1-2-3-conjecture [J].
Kalkowski, Maciej ;
Karonski, Michal ;
Pfender, Florian .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (03) :347-349
[10]   Edge weights and vertex colours [J].
Karonski, M ;
Luczak, T ;
Thomason, A .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 91 (01) :151-157