GENERALIZED INVERSES OF HANKEL AND TOEPLITZ MOSAIC MATRICES

被引:20
作者
HEINIG, G
机构
[1] Dept. of Mathematics, Kuwait University, Safat, 13060
关键词
D O I
10.1016/0024-3795(93)00097-J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hankel and Toeplitz mosaic matrices are block matrices with Hankel or Toeplitz blocks, respectively. It is shown that Hankel and Toeplitz mosaic matrices possess reflexive generalized inverses which are Bezoutians. Furthermore the Bezoutian structure of the Moore-Penrose and group inverses is investigated.
引用
收藏
页码:43 / 59
页数:17
相关论文
共 22 条
[1]   GENERALIZED BEZOUTIAN AND SYLVESTER MATRICES IN MULTIVARIABLE LINEAR-CONTROL [J].
ANDERSON, BDO ;
JURY, EI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (04) :551-556
[2]  
[Anonymous], 1980, LINEAR SYSTEMS
[3]   THE STRUCTURE OF THE SINGULAR SOLUTION TABLE OF THE M-PADE APPROXIMATION PROBLEM [J].
BECKERMANN, B .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 32 (1-2) :3-15
[4]   BORDERED MATRICES [J].
BLATTNER, JW .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1962, 10 (03) :528-536
[5]   MINIMAL VECTOR PADE-APPROXIMATION [J].
BULTHEEL, A ;
VANBAREL, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 32 (1-2) :27-37
[6]  
Gohberg I., 1974, MATH MONOGR, V41
[7]  
Gohberg I., 1974, REV ROUM MATH PURE A, V19, P623
[8]  
GOHBERG I, IN PRESS LINEAR ALGE
[9]  
Gohberg IC, 1972, MAT ISSLED, V7, P201
[10]   KERNEL STRUCTURE OF BLOCK HANKEL AND TOEPLITZ MATRICES AND PARTIAL-REALIZATION [J].
HEINIG, G ;
JANKOWSKI, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 175 :1-30