A STABILITY-INSTABILITY BOUNDARY FOR DISTURBANCE-FREE SLOW ADAPTATION WITH UNMODELED DYNAMICS

被引:29
作者
RIEDLE, BD
KOKOTOVIC, PV
机构
[1] Univ of Illinois, Coordinated, Science Lab, Urbana, IL, USA, Univ of Illinois, Coordinated Science Lab, Urbana, IL, USA
关键词
CONTROL SYSTEMS; LINEAR - CONTROL SYSTEMS; TIME VARYING - SYSTEM STABILITY;
D O I
10.1109/TAC.1985.1103810
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The instability of adaptive schemes for small values of parameter adjustment gain has the form of a slow drift of adjustable parameters. Using an averaging analysis, the authors derive not only a sufficient condition for stability of this drift, but also a sufficient condition for it to be unstable. A sharp boundary between stability and instability is signal dependent and much less demanding than the usual strict positive realness property. The new positivity condition has a simple signal energy interpretation.
引用
收藏
页码:1027 / 1030
页数:4
相关论文
共 15 条
[1]   EXPONENTIAL STABILITY OF LINEAR EQUATIONS ARISING IN ADAPTIVE IDENTIFICATION [J].
ANDERSON, BDO .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (01) :83-88
[2]  
ANDERSON BDO, 1984, 23RD P IEEE C DEC CO
[3]  
ASTROM KJ, 1983, 22ND P IEEE C DEC CO
[4]  
BOYD S, 1984, 1984 P AM CONTR C SA
[5]  
Hale J. K., 1980, ORDINARY DIFFERENTIA
[6]   ROBUST REDESIGN OF ADAPTIVE-CONTROL [J].
IOANNOU, PA ;
KOKOTOVIC, PV .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (03) :202-211
[7]  
IOANNOU PA, 1983, SPRINGERVERLAG SERIE, V47
[8]  
KOKOTOVIC PV, 1984, 1984 P AM CONTR C SA
[9]  
KOSUT RL, 1983, 22ND P IEEE C DEC CO
[10]  
KRAUSE J, 1983, 22ND P IEEE C DEC CO