Induced pluripotent stem (iPS) cells offer a powerful new tool for the life sciences

被引:0
作者
Nakamura, Yukio [1 ]
机构
[1] RIKEN BioResource Ctr, Cell Engn Div, Koyadai 3-1-1, Tsukuba, Ibaraki 3050074, Japan
关键词
ES cells; iPS cells; Regenerative medicine; Disease specific iPS cells;
D O I
暂无
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Stem cell biology started with the analysis of somatic stem cells that function to maintain the adult body. We now know that the body is maintained by regeneration of a wide range of cell types, such as skin cells, blood cells and gastrointestinal mucous cells, from somatic stem cells. This regenerative activity is essential for survival. Regenerative medicine was initiated to identify therapies that support and/or accelerate this natural regenerative ability. For example, bone marrow transplantation is a therapy for reconstituting hematopoiesis from the hematopoietic stem cells present in the donor bone marrow. The successful development of a protocol for obtaining human embryonic stem (ES) cells prompted medical scientists to utilize human ES cells for regenerative medicine. However, use of these cells raises ethical issues as they are derived from human embryos. An alternative approach using ES-like pluripotent stem cells has the considerable advantage that it does not necessitate use of human embryos. Pluripotent stem cells can be induced from terminally differentiated somatic cells by the introduction of only four defined factors. The products of this method are termed "induced pluripotent stem (iPS)" cells. iPS cells have considerable promise as a substitute for ES cells not only for regenerative medicine but also in many other fields. For example, liver and heart cells derived from iPS cells can be used in pharmaceutical research. In addition, iPS cell technology opens new avenues of disease research, for example, by construction of so-called "disease-specific iPS cells" from a patient's somatic cells.
引用
收藏
页码:2 / 9
页数:8
相关论文
共 40 条
[1]   Generation of pluripotent stem cells from adult mouse liver and stomach cells [J].
Aoi, Takashi ;
Yae, Kojiro ;
Nakagawa, Masato ;
Ichisaka, Tomoko ;
Okita, Keisuke ;
Takahashi, Kazutoshi ;
Chiba, Tsutomu ;
Yamanaka, Shinya .
SCIENCE, 2008, 321 (5889) :699-702
[2]   VIEWPOINT Induced pluripotent stem cells and reprogramming: seeing the science through the hype [J].
Belmonte, Juan Carlos Izpisua ;
Ellis, James ;
Hochedlinger, Konrad ;
Yamanaka, Shinya .
NATURE REVIEWS GENETICS, 2009, 10 (12) :878-U80
[3]   Producing primate embryonic stem cells by somatic cell nuclear transfer [J].
Byrne, J. A. ;
Pedersen, D. A. ;
Clepper, L. L. ;
Nelson, M. ;
Sanger, W. G. ;
Gokhale, S. ;
Wolf, D. P. ;
Mitalipov, S. M. .
NATURE, 2007, 450 (7169) :497-U3
[4]   Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons [J].
Dimos, John T. ;
Rodolfa, Kit T. ;
Niakan, Kathy K. ;
Weisenthal, Laurin M. ;
Mitsumoto, Hiroshi ;
Chung, Wendy ;
Croft, Gist F. ;
Saphier, Genevieve ;
Leibel, Rudy ;
Goland, Robin ;
Wichterle, Hynek ;
Henderson, Christopher E. ;
Eggan, Kevin .
SCIENCE, 2008, 321 (5893) :1218-1221
[5]   Induced pluripotent stem cells from a spinal muscular atrophy patient [J].
Ebert, Allison D. ;
Yu, Junying ;
Rose, Ferrill F., Jr. ;
Mattis, Virginia B. ;
Lorson, Christian L. ;
Thomson, James A. ;
Svendsen, Clive N. .
NATURE, 2009, 457 (7227) :277-U1
[6]   ESTABLISHMENT IN CULTURE OF PLURIPOTENTIAL CELLS FROM MOUSE EMBRYOS [J].
EVANS, MJ ;
KAUFMAN, MH .
NATURE, 1981, 292 (5819) :154-156
[7]   Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome [J].
Fusaki, Noemi ;
Ban, Hiroshi ;
Nishiyama, Akiyo ;
Saeki, Koichi ;
Hasegawa, Mamoru .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES B-PHYSICAL AND BIOLOGICAL SCIENCES, 2009, 85 (08) :348-362
[8]   ADULT FROGS DERIVED FROM NUCLEI OF SINGLE SOMATIC CELLS [J].
GURDON, JB .
DEVELOPMENTAL BIOLOGY, 1962, 4 (02) :256-&
[9]   Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin [J].
Hanna, Jacob ;
Wernig, Marius ;
Markoulaki, Styliani ;
Sun, Chiao-Wang ;
Meissner, Alexander ;
Cassady, John P. ;
Beard, Caroline ;
Brambrink, Tobias ;
Wu, Li-Chen ;
Townes, Tim M. ;
Jaenisch, Rudolf .
SCIENCE, 2007, 318 (5858) :1920-1923
[10]   Establishment of Mouse Embryonic Stem Cell-Derived Erythroid Progenitor Cell Lines Able to Produce Functional Red Blood Cells [J].
Hiroyama, Takashi ;
Miharada, Kenichi ;
Sudo, Kazuhiro ;
Danjo, Inaho ;
Aoki, Naoko ;
Nakamura, Yukio .
PLOS ONE, 2008, 3 (02)