Triharmonic morphisms between Riemannian manifolds

被引:2
作者
Maeta, Shun [1 ]
机构
[1] Tohoku Univ, Div Math, GSIS, Sendai, Miyagi 9808579, Japan
基金
日本学术振兴会;
关键词
Triharmonic morphisms; harmonic morphisms; biharmonic morphisms; biharmonic maps;
D O I
10.1007/s00022-014-0217-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Polyharmonic functions have been studied in various fields. There are maps between Riemannian manifolds called harmonic morphisms and biharmonic morphisms that preserve harmonic functions and biharmonic functions respectively. In this paper, we introduce the notion of k-polyharmonic morphisms as maps that preserves polyharmonic functions of order k. For k = 3, we obtain several characterizations of triharmonic morphisms. We also give some relationships among harmonic, biharmonic, and triharmonic morphisms, and a relationship between triharmonic morphisms and p-harmonic morphisms.
引用
收藏
页码:507 / 527
页数:21
相关论文
共 20 条
  • [1] P-HARMONIC MAPS AND MINIMAL SUBMANIFOLDS
    BAIRD, P
    GUDMUNDSSON, S
    [J]. MATHEMATISCHE ANNALEN, 1992, 294 (04) : 611 - 624
  • [2] Baird P., 2003, HARMONIC MORPHISMS R
  • [3] Burel Jean-Marie, 2000, CONT MATH, V308, P21, DOI 10.1090/conm/308/05310
  • [4] Eells J., 1983, CBMS AM MATH SOC, V50
  • [5] A CRITERION OF NONVANISHING DIFFERENTIAL OF A SMOOTH MAP
    FUGLEDE, B
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1982, 14 (MAR) : 98 - 102
  • [6] Fuglede B., 1978, ANN I FOURIER GRENOB, V28, P107
  • [7] Bi-harmonic maps and bi-Yang-Mills fields
    Ichiyama, Toshiyuki
    Inoguchi, Jun-ichi
    Urakawa, Hajime
    [J]. NOTE DI MATEMATICA, 2008, 28 : 233 - 275
  • [8] Ishihara T., 1979, J MATH KYOTO U, V19, P215
  • [9] 2-harmonic maps and their first and second variational formulas
    Jiang Guoying
    [J]. NOTE DI MATEMATICA, 2008, 28 : 209 - 232
  • [10] BIHARMONIC MAPS AND MORPHISMS FROM CONFORMAL MAPPINGS
    Loubeau, Eric
    Ou, Ye-Lin
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2010, 62 (01) : 55 - 73