NUMERICAL-SOLUTION OF LINEAR ELASTIC PROBLEMS BY SPECTRAL COLLOCATION METHODS

被引:8
作者
CIVIDINI, A
QUARTERONI, A
ZAMPIERI, E
机构
[1] POLITECN MILAN,DIPARTIMENTO MATEMAT,VIA BONARDI 7,I-20133 MILAN,ITALY
[2] UNIV MILAN,DIPARTIMENTO MATH,I-20133 MILAN,ITALY
[3] POLITECN MILAN,DIPARTIMENTO INGN STRUTTURALE,I-20133 MILAN,ITALY
[4] UNIV MINNESOTA,SCH MATH,MINNEAPOLIS,MN 55455
[5] UNIV MINNESOTA,INST SUPERCOMP,MINNEAPOLIS,MN 55455
关键词
D O I
10.1016/0045-7825(93)90206-D
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Numerical approximations to the linear elastic system are traditionally based on the finite element method. Here we propose a new formulation based on the spectral collocation method. A rigorous theoretical analysis is developed in order to prove the stability and convergence properties of the collocation scheme. We also consider domain decomposition methods in order to handle complex geometries and non-smooth data. Finally we present several numerical results for some examples concerning benchmark problems in geomechanics.
引用
收藏
页码:49 / 76
页数:28
相关论文
共 20 条
[1]  
[Anonymous], 1971, ITERATIVE SOLUTION L
[2]  
BATHE KJ, 1987, FINITE ELEMENT PROCE
[3]  
Canuto C., 2012, SPECTRAL METHODS EVO
[4]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO
[5]  
DAVIS PJ, 1984, METHODS NUMERICAL IN
[6]  
Johnson C., 1987, NUMERICAL SOLUTION P
[7]  
Jommi C., 1989, COMPUT GEOTECH, V8, P269
[8]  
Lions JL., 1972, NONHOMOGENEOUS BOUND, V1
[9]  
Malvern LE, 1969, INTRO MECHANICS CONT
[10]  
Quarteroni A., 1988, Journal of Scientific Computing, V3, P45, DOI 10.1007/BF01066482