MAX-BALANCING WEIGHTED DIRECTED-GRAPHS AND MATRIX SCALING

被引:42
作者
SCHNEIDER, H [1 ]
SCHNEIDER, MH [1 ]
机构
[1] JOHNS HOPKINS UNIV,DEPT MATH SCI,BALTIMORE,MD 21218
关键词
DIRECTED GRAPHS; WEIGHTED ARCS; POTENTIALS;
D O I
10.1287/moor.16.1.208
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A weighted directed graph G is a triple (V, A, g) where (V, A) is a (V,A) is directed graph and g is an arbitrary real-valued function defined on the arc set A. Let G be a strongly-connected, simple weighted directed graph. We say that G is max-balanced if for every nontrivial subset of the vertices W, the maximum weight over arcs leaving W equals the maximum weight over arcs entering W. We show that there exists a (up to an additive constant) unique potential p(v) for v is-an-element-of V such that (V, A, g(p) is max-balanced where g(a)p = p(u) + g(a) - p(u) + for a = (u,v) is-an-element-of A. We describe an O(\V\2\)A\) algorithm for computing p using an algorithm for computing the maximum cycle-mean of G. Finally, we apply our principal result to the similarity scaling of nonnegative matrices.
引用
收藏
页码:208 / 222
页数:15
相关论文
共 16 条
[1]  
BURKARD RE, 1982, MODERN APPLIED MATH
[2]  
EAVES BC, 1985, MATH PROGRAM STUD, V25, P124
[3]  
ENGEL GM, 1975, CZECH MATH J, V25, P389
[4]  
Golitschek M. V., 1982, NUMER MATH, V39, P65
[5]  
GOLITSCHEK MV, 1984, NUMER MATH, V44, P111
[6]   ALGEBRAIC FLOWS IN REGULAR MATROIDS [J].
HAMACHER, H .
DISCRETE APPLIED MATHEMATICS, 1980, 2 (01) :27-38
[7]  
HAMACHER H, 1980, DISCRETE STRUCTURES, P153
[8]  
KARP RM, 1978, DISCRETE MATH, V23, P309, DOI 10.1016/0012-365X(78)90011-0
[9]   ON PRE-CONDITIONING OF MATRICES [J].
OSBORNE, EE .
JOURNAL OF THE ACM, 1960, 7 (04) :338-345
[10]  
ROTHBLUM UG, 1989, OR GROUP REPORT SERI, V901