A DOUBLE INEQUALITY FOR THE COMBINATION OF TOADER MEAN AND THE ARITHMETIC MEAN IN TERMS OF THE CONTRAHARMONIC MEAN

被引:10
作者
Jiang, Wei-Dong [1 ]
Qi, Feng [2 ,3 ,4 ]
机构
[1] Weihai Vocat Coll, Dept Informat Engn, Weihai City, Shandong, Peoples R China
[2] Tianjin Polytech Univ, Coll Sci, Dept Math, Tianjin, Peoples R China
[3] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City, Inner Mongolia, Peoples R China
[4] Henan Polytech Univ, Inst Math, Jiaozuo City, Henan Province, Peoples R China
来源
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD | 2016年 / 99卷 / 113期
关键词
bound; contraharmonic mean; arithmetic mean; Toader mean; complete elliptic integrals;
D O I
10.2298/PIM141026009J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find the greatest value lambda and the least value mu such that the double inequality C(lambda a + (1 - lambda)b, lambda b + (1 - lambda)a) < alpha A (a,b) C(mu a + (1 -mu)b, mu b + (1 - mu)a) holds for all alpha is an element of (0, 1) and a, b > 0 with a not equal b, where C (a, b), Lambda (a, b), and T (a, b) denote respectively the contraharmonic, arithmetic, and Toader means of two positive numbers a and b.
引用
收藏
页码:237 / 242
页数:6
相关论文
共 19 条
[1]   Monotonicity theorems and inequalities for the complete elliptic integrals\ [J].
Alzer, H ;
Qiu, SL .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 172 (02) :289-312
[2]  
Anderson GD, 1997, CONFORMAL INVARIANTS
[3]  
[Anonymous], 1961, INTRO ELLIPTIC FUNCT
[4]  
[Anonymous], 1998, TAMKANG J MATH
[5]   An inequality involving the generalized hypergeometric function and the arc length of an ellipse [J].
Barnard, RW ;
Pearce, K ;
Richards, KC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (03) :693-699
[6]  
Byrd P.F., 1971, HDB ELLIPTIC INTEGRA
[7]   Inequalities between Arithmetic-Geometric, Gini, and Toader Means [J].
Chu, Yu-Ming ;
Wang, Miao-Kun .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[8]   Sharp Generalized Seiffert Mean Bounds for Toader Mean [J].
Chu, Yu-Ming ;
Wang, Miao-Kun ;
Qiu, Song-Liang ;
Qiu, Ye-Fang .
ABSTRACT AND APPLIED ANALYSIS, 2011,
[9]   SHARP BOUNDS FOR TOADER MEAN IN TERMS OF CONTRAHARMONIC MEAN WITH APPLICATIONS [J].
Chu, Yu-Ming ;
Wang, Miao-Kun ;
Ma, Xiao-Yan .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (02) :161-166
[10]   Optimal combinations bounds of root-square and arithmetic means for Toader mean [J].
Chu, Yu-Ming ;
Wang, Miao-Kun ;
Qiu, Song-Liang .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2012, 122 (01) :41-51