FEATURE-SELECTION BASED ON THE APPROXIMATION OF CLASS DENSITIES BY FINITE MIXTURES OF SPECIAL TYPE

被引:44
作者
PUDIL, P [1 ]
NOVOVICOVA, J [1 ]
CHOAKJARERNWANIT, N [1 ]
KITTLER, J [1 ]
机构
[1] ACAD SCI CZECH REPUBL,INST INFORMAT THEORY & AUTOMAT,CR-18208 PRAGUE 8,CZECH REPUBLIC
关键词
FEATURE SELECTION; FEATURE ORDERING; MIXTURE DISTRIBUTION; MAXIMUM LIKELIHOOD; EM ALGORITHM;
D O I
10.1016/0031-3203(94)00009-B
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new method of feature selection based on the approximation of class conditional densities by a mixture of parameterized densities of a special type, suitable especially for multimodal data, is presented. No search procedure is needed when using the proposed method. Its performance is tested both on real and simulated data.
引用
收藏
页码:1389 / 1398
页数:10
相关论文
共 24 条
[1]  
DAY NE, 1969, BIOMETRIKA, V56, P463, DOI 10.1093/biomet/56.3.463
[2]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[3]  
DEVIJVER PA, 1992, PATTERN RECOGNITION
[4]   MAXIMUM LIKELIHOOD ESTIMATION FOR MIXTURES OF 2 NORMAL DISTRIBUTIONS [J].
DICK, NP ;
BOWDEN, DC .
BIOMETRICS, 1973, 29 (04) :781-790
[5]  
Duda R. O., 1973, PATTERN CLASSIFICATI, V3
[8]  
FUKUNAGA K, 1990, INTRO STATISTICAL PA
[9]  
GRIM J, 1986, KYBERNETIKA, V22, P142
[10]  
GRIM J, 1982, KYBERNETIKA, V18, P173