Reciprocal Degree Distance of Grassmann Graphs

被引:0
作者
Pourfaraj, Lotfallah [1 ]
机构
[1] Islam Azad Univ, Dept Math, Cent Tehran Branch, Tehran, Iran
来源
IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY | 2013年 / 4卷 / 02期
关键词
Grassmann graph; Harary index; vertex-transitive graphs;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, Hua et al. defined a new topological index based on degrees and inverse of distances between all pairs of vertices. They named this new graph invariant as reciprocal degree distance as RDD(G) =Sigma({u,v}subset of V(G))(d(u)+ d(v))[d(u,v)](-1), where the d(u,v) denotes the distance between vertices u and v. In this paper, we compute this topological index for Grassmann graphs.
引用
收藏
页码:249 / 255
页数:7
相关论文
共 10 条
[1]  
[Anonymous], 2006, MOL TOPOLOGY ITS APP
[2]  
Diudea M.V., 2001, MOL TOPOLOGY
[3]  
Diudea M.V., 2002, MOL TOPOLOGY
[4]  
Gutman I., 1986, MATH CONCEPTS ORGANI, DOI DOI 10.1007/978-3-642-70982-1
[5]   On the reciprocal degree distance of graphs [J].
Hua, Hongbo ;
Zhang, Shenggui .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) :1152-1163
[6]  
Johnson M. A., 1990, CONCEPTS APPL MOL SI
[7]   A REMARK ON GRASSMANN SPACES AND HALF-SPIN GEOMETRIES [J].
SHULT, EE .
EUROPEAN JOURNAL OF COMBINATORICS, 1994, 15 (01) :47-52
[8]   STRUCTURAL DETERMINATION OF PARAFFIN BOILING POINTS [J].
WIENER, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1947, 69 (01) :17-20
[9]  
[No title captured]
[10]  
[No title captured]