SYNTHESIS AND CHARACTERIZATION OF CNT/MnO2 NANOCOMPOSITE MATERIAL FOR APPLICATION OF SUPERCAPACITORS MATERIAL

被引:0
作者
Subagio, A. [1 ]
Priyono [1 ]
Pardoyo [1 ]
Yudianti, R. [2 ]
机构
[1] Univ Dipoengoro, Jurusan Fis, Fak Sains & Matemat, Semarang, Indonesia
[2] Lembaga Ilmu Pengetahuan Indonesia, Pusat Penelitian Fis, Jakarta, Indonesia
来源
JURNAL PENDIDIKAN FISIKA INDONESIA-INDONESIAN JOURNAL OF PHYSICS EDUCATION | 2014年 / 10卷 / 01期
关键词
supercapacitors; nanocomposite; CNT/MnO2; resistance; electrochemical impedance spectroscopy;
D O I
10.15294/jpfi.v10i1.3056
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Nanocomposite materials CNT/MnO2 have been fabricated as candidate of supercapacitor electrode material with a redox reaction between CNT and KMnO4. Variations in the composition of the two materials were carried out to determine the structure, morphology and electrical properties of CNT/MnO2 with mass ratio of 0, 25, 50 and 75 %. Pattern of the crystal structure and morphology of the CNT/MnO2 nanocomposite powder were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM), while the bond pattern was characterized by FTIR. CNT/MnO2 nanocomposite powder was managed to make cylindrical pellets with diameter of 1 cm and thickness of 2 mm with variations addition of binder polyvinylidene difluoride (PVDF) of 10, 20 and 30%. Pellets of the material were then heated at a temperature of 70 degrees C for 1 hour. Resistance measurement results showed that the ratio of the mass of material CNT/MnO2 by 75% and additions by 20% PVDF binder showed the lowest resistance value. Furthermore, CNT/MnO2 supercapacitor prototype using PVDF of 20% measured with electrochemical impedance spectroscopy method showed specific capacitance of 7.86 F/gr. (C) 2014 Jurusan Fisika FMIPA UNNES Semarang
引用
收藏
页码:92 / 103
页数:12
相关论文
共 12 条
[1]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[2]   Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes [J].
Boukhalfa, Sofiane ;
Evanoff, Kara ;
Yushin, Gleb .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :6872-6879
[3]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[4]   Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials [J].
Emmenegger, C ;
Mauron, P ;
Sudan, P ;
Wenger, P ;
Hermann, V ;
Gallay, R ;
Züttel, A .
JOURNAL OF POWER SOURCES, 2003, 124 (01) :321-329
[5]   Carbon Nanotube/Manganese Oxide Ultrathin Film Electrodes for Electrochemical Capacitors [J].
Lee, Seung Woo ;
Kim, Junhyung ;
Chen, Shuo ;
Hammond, Paula T. ;
Shao-Horn, Yang .
ACS NANO, 2010, 4 (07) :3889-3896
[6]   Nanocomposite Electrodes for High-Performance Supercapacitors [J].
Lu, Wen ;
Hartman, Rachel ;
Qu, Liangti ;
Dai, Liming .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (06) :655-660
[7]  
Miller JR, 2008, ELECTROCHEM SOC INTE, V17, P53
[8]   Materials science - Electrochemical capacitors for energy management [J].
Miller, John R. ;
Simon, Patrice .
SCIENCE, 2008, 321 (5889) :651-652
[9]  
Min-min Z., 2011, T NONFERR METAL SOC, V21, P2010
[10]   Carbon properties and their role in supercapacitors [J].
Pandolfo, A. G. ;
Hollenkamp, A. F. .
JOURNAL OF POWER SOURCES, 2006, 157 (01) :11-27