User-friendly Bayesian regression modeling: A tutorial with rstanarm and shinystan

被引:148
作者
Muth, Chelsea [1 ]
Oravecz, Zita [1 ]
Gabry, Jonah [2 ]
机构
[1] Penn State Univ, University Pk, PA 16802 USA
[2] Columbia Univ, New York, NY 10027 USA
来源
QUANTITATIVE METHODS FOR PSYCHOLOGY | 2018年 / 14卷 / 02期
关键词
Bayesian modeling; regression; hierarchical linear model;
D O I
10.20982/tqmp.14.2.p099
中图分类号
C [社会科学总论];
学科分类号
03 ; 0303 ;
摘要
This tutorial provides a pragmatic introduction to specifying, estimating and interpreting single-level and hierarchical linear regression models in the Bayesian framework. We start by summarizing why one should consider the Bayesian approach to the most common forms of regression. Next we introduce the R package rstanarm for Bayesian applied regression modeling. An overview of rstanarm fundamentals accompanies step-by-step guidance for 1 tting a single-level regression model with the stan_glm function, and 1 tting hierarchical regression models with the stan_lmer function, illustrated with data from an experience sampling study on changes in affective states. Exploration of the results is facilitated by the intuitive and user-friendly shinystan package. Data and scripts are available on the Open Science Framework page of the project. For readers unfamiliar with R, this tutorial is self-contained to enable all researchers who apply regression techniques to try these methods with their own data. Regression modeling with the functions in the rstanarm package will be a straightforward transition for researchers familiar with their frequentist counterparts, lm (or glm) and lmer.
引用
收藏
页码:99 / 119
页数:21
相关论文
共 28 条
[1]  
Arbuckle J. L., 1999, AMOS 4 0 USERS GUIDE, P1
[2]   Fitting Linear Mixed-Effects Models Using lme4 [J].
Bates, Douglas ;
Maechler, Martin ;
Bolker, Benjamin M. ;
Walker, Steven C. .
JOURNAL OF STATISTICAL SOFTWARE, 2015, 67 (01) :1-48
[3]  
Betancourt M., 2017, CONCEPTUAL INTRO HAM
[4]   brms: An R Package for Bayesian Multilevel Models Using Stan [J].
Buerkner, Paul-Christian .
JOURNAL OF STATISTICAL SOFTWARE, 2017, 80 (01) :1-28
[5]   Stan: A Probabilistic Programming Language [J].
Carpenter, Bob ;
Gelman, Andrew ;
Hoffman, Matthew D. ;
Lee, Daniel ;
Goodrich, Ben ;
Betancourt, Michael ;
Brubaker, Marcus A. ;
Guo, Jiqiang ;
Li, Peter ;
Riddell, Allen .
JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (01) :1-29
[6]  
Cohen J., 1983, APPL MULTIPLE REGRES
[7]   VALIDITY AND RELIABILITY OF THE EXPERIENCE-SAMPLING METHOD [J].
CSIKSZENTMIHALYI, M ;
LARSON, R .
JOURNAL OF NERVOUS AND MENTAL DISEASE, 1987, 175 (09) :526-536
[8]  
Gabry J., 2017, ESTIMATING GEN LINEA
[9]  
Gabry J., 2017, RSTANARM BAYESIAN AP
[10]  
Gabry J., 2017, BAYESPLOT PLOTTING B