REMARK ON THE DIMER PROBLEM

被引:29
作者
SACHS, H [1 ]
ZERNITZ, H [1 ]
机构
[1] ARCOMP GMBH,ARNSTADT,GERMANY
关键词
D O I
10.1016/0166-218X(94)90106-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S(n) be the 2n x 2n square lattice and c(S(n)) the number of dimer coverings of S(n). In 1961, M.E. Fisher, P.W. Kasteleyn and H.N.V. Temperley/M.E. Fisher established the-now classical-result that log c(S(n)) is asymptotically equivalent to C(S)\S(n)\ where C(S) > 0 is a constant. In this paper, another sequence {T(n)} of subsets of the infinite square lattice is considered which, in a way, is similar to {S(n)}, and by elementary means it is shown that the asymptotic behaviour of c(T(n)) is quite different from that of c(S(n)): in fact, log c(T(n)) approximately CT square-root \T(n)\ where C(T) > 0 is a constant.
引用
收藏
页码:171 / 179
页数:9
相关论文
共 10 条
[1]  
ALKHNAIFES K, 1990, CONT METHODS GRAPH T, P47
[2]  
[Anonymous], 1967, GRAPH THEORY THEORET
[3]   STATISTICAL MECHANICS OF DIMERS ON A PLANE LATTICE [J].
FISHER, ME .
PHYSICAL REVIEW, 1961, 124 (06) :1664-&
[4]  
GRONAU HDO, 1987, ZASTOSOW MAT, V19, P399
[5]  
John P., 1987, ZASTOSOW MAT, V19, P465
[6]   STATISTICS OF DIMERS ON A LATTICE .1. NUMBER OF DIMER ARRANGEMENTS ON A QUADRATIC LATTICE [J].
KASTELEYN, P .
PHYSICA, 1961, 27 (12) :1209-+
[7]  
Montroll E.W., 1964, APPL COMBINATORIAL M, P96
[8]  
PERCUS JK, 1971, COMBINATORIAL METHOD, P89
[9]  
SACHS H, 1990, TOPICS COMBINATORICS, P577
[10]   DIMER PROBLEM IN STATISTICAL MECHANICS - AN EXACT RESULT [J].
TEMPERLEY, HNV ;
FISHER, ME .
PHILOSOPHICAL MAGAZINE, 1961, 6 (68) :1061-1063