THE NUMERICAL COMPUTATION OF SINGULAR MINIMIZERS IN 2-DIMENSIONAL ELASTICITY

被引:16
作者
NEGRONMARRERO, PV [1 ]
BETANCOURT, O [1 ]
机构
[1] CUNY CITY COLL,DEPT COMP SCI,NEW YORK,NY 10031
关键词
D O I
10.1006/jcph.1994.1136
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we use a spectral-collocation method for the computation of singular minimizers in two-dimensional elasticity. In particular we are interested in computing cavitating solutions (those that open a hole at the center) and determining whether or not they are globally stable in the energy sense. We describe the spectral collocation method which is used in conjunction with a Richardson extrapolation iteration and discuss various aspects related to the convergence of the method. We obtain a variety of results for certain ranges of parameters that show how the size of the cavitation depends on these parameters. (C) 1994 Academic Press, Inc.
引用
收藏
页码:291 / 303
页数:13
相关论文
共 13 条
[1]   SINGULAR MINIMIZERS FOR REGULAR ONE-DIMENSIONAL PROBLEMS IN THE CALCULUS OF VARIATIONS [J].
BALL, JM ;
MIZEL, VJ .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 11 (01) :143-146
[2]   A NUMERICAL-METHOD FOR DETECTING SINGULAR MINIMIZERS [J].
BALL, JM ;
KNOWLES, G .
NUMERISCHE MATHEMATIK, 1987, 51 (02) :181-197
[3]  
BAUER F, 1984, MAGNETIC HYDRODYNAMI
[4]  
BAUER F, 1978, COMPUTATIONAL METHOD
[5]  
BETANCOURT O, 1988, COMMUN PURE APPL MAT, V4, P551
[6]  
Garabedian P., 1964, PARTIAL DIFFERENTIAL
[7]  
Gent A.N., 1958, P ROY SOC LOND A MAT, V249, P195, DOI DOI 10.1098/RSPA.1959.0016)
[8]  
JAMES RD, 1989, IMA PREPRING SERIES, V572
[9]  
Lavrentiev M., 1926, ANN MAT PUR APPL, V4, P7
[10]  
Negron-Marrero P. V., 1990, NUMER MATH, V58, P135