A FINITELY ADDITIVE GENERALIZATION OF BIRKHOFF ERGODIC THEOREM

被引:1
作者
RAMAKRISHNAN, S
机构
关键词
D O I
10.2307/2046171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:299 / 305
页数:7
相关论文
共 50 条
[21]   A GENERALIZATION OF THE POINCARE-BIRKHOFF THEOREM [J].
WINKELNKEMPER, HE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (04) :1028-1030
[22]   AN ERGODIC THEOREM AND ITS GENERALIZATION [J].
WOLF, AA .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1967, 283 (04) :286-&
[23]   GENERALIZATION OF AN ERGODIC THEOREM OF HOPF [J].
TEMPELMA.AA .
TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1972, 17 (02) :380-&
[24]   GENERALIZATION OF MEAN ERGODIC THEOREM [J].
LEVIATAN, D ;
RAMANUJA.MS .
STUDIA MATHEMATICA, 1971, 39 (02) :113-&
[25]   A GENERALIZATION OF MEAN ERGODIC THEOREM [J].
LEVIATAN, D .
NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01) :247-&
[26]   Large deviations and the rate of convergence in the Birkhoff ergodic theorem [J].
Kachurovskii, A. G. ;
Podvigin, I. V. .
MATHEMATICAL NOTES, 2013, 94 (3-4) :524-531
[27]   On the constants in the estimates of the rate of convergence in the Birkhoff Ergodic theorem [J].
A. G. Kachurovskii ;
V. V. Sedalishchev .
Mathematical Notes, 2012, 91 :582-587
[28]   On the constants in the estimates of the rate of convergence in the Birkhoff Ergodic theorem [J].
Kachurovskii, A. G. ;
Sedalishchev, V. V. .
MATHEMATICAL NOTES, 2012, 91 (3-4) :582-587
[29]   Large deviations and the rate of convergence in the Birkhoff ergodic theorem [J].
A. G. Kachurovskii ;
I. V. Podvigin .
Mathematical Notes, 2013, 94 :524-531
[30]   Towards some generalization of Birkhoff's theorem [J].
Hernandez-Pastora, J. L. .
PHYSICS AND MATHEMATICS OF GRAVITATION, 2009, 1122 :300-303